Paolo Francesco Scaramuzzino, Daan M. Pool, Marilena D. Pavel, Olaf Stroosma, Giuseppe Quaranta, Max Mulder
{"title":"Autorotation Transfer of Training: Effects of Helicopter Dynamics","authors":"Paolo Francesco Scaramuzzino, Daan M. Pool, Marilena D. Pavel, Olaf Stroosma, Giuseppe Quaranta, Max Mulder","doi":"10.4050/jahs.69.022007","DOIUrl":null,"url":null,"abstract":"This paper analyzes the effects of the helicopter dynamics on pilots' learning process and transfer of learned skills during autorotation training. A quasi-transfer-of-training experiment was performed with 10 experienced helicopter pilots in the SIMONA moving-base flight simulator at Delft University of Technology. Pilots had to control an in-house flight dynamics model setup to simulate two types of helicopter dynamics: (1) a “hard” dynamics characterized by a low autorotative flare index requiring high pilot control compensation and (2) a “easy” dynamics characterized by a high autorotative flare index with low pilot control compensation required. Two groups of pilots tested these types of dynamics in a different training sequence: hard-easy-hard (HEH group) and easy-hard-easy (EHE group). The main conclusion of this study proved that simulator training for autorotation can best start with pilots training in the most resource demanding condition. A more challenging helicopter's dynamics will require higher pilot agility and more rapid responses to his/her perceptual changes. This will result in pilots developing more robust and adaptable flying skills. Indeed, a clear positive transfer of training effect was observed in the experiment presented in this paper in terms of acquired pilot skills in the HEH group, but not the EHE group. Positive transfer was especially observed in terms of reduced rate of descent at touchdown. The two groups differed in the control strategy applied, with the HEH group having developed a control technique mimicking more closely the one adopted in a real helicopter.","PeriodicalId":50017,"journal":{"name":"Journal of the American Helicopter Society","volume":"22 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Helicopter Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4050/jahs.69.022007","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper analyzes the effects of the helicopter dynamics on pilots' learning process and transfer of learned skills during autorotation training. A quasi-transfer-of-training experiment was performed with 10 experienced helicopter pilots in the SIMONA moving-base flight simulator at Delft University of Technology. Pilots had to control an in-house flight dynamics model setup to simulate two types of helicopter dynamics: (1) a “hard” dynamics characterized by a low autorotative flare index requiring high pilot control compensation and (2) a “easy” dynamics characterized by a high autorotative flare index with low pilot control compensation required. Two groups of pilots tested these types of dynamics in a different training sequence: hard-easy-hard (HEH group) and easy-hard-easy (EHE group). The main conclusion of this study proved that simulator training for autorotation can best start with pilots training in the most resource demanding condition. A more challenging helicopter's dynamics will require higher pilot agility and more rapid responses to his/her perceptual changes. This will result in pilots developing more robust and adaptable flying skills. Indeed, a clear positive transfer of training effect was observed in the experiment presented in this paper in terms of acquired pilot skills in the HEH group, but not the EHE group. Positive transfer was especially observed in terms of reduced rate of descent at touchdown. The two groups differed in the control strategy applied, with the HEH group having developed a control technique mimicking more closely the one adopted in a real helicopter.
期刊介绍:
The Journal of the American Helicopter Society is a peer-reviewed technical journal published quarterly (January, April, July and October) by AHS — The Vertical Flight Society. It is the world''s only scientific journal dedicated to vertical flight technology and is available in print and online.
The Journal publishes original technical papers dealing with theory and practice of vertical flight. The Journal seeks to foster the exchange of significant new ideas and information about helicopters and V/STOL aircraft. The scope of the Journal covers the full range of research, analysis, design, manufacturing, test, operations, and support. A constantly growing list of specialty areas is included within that scope. These range from the classical specialties like aerodynamic, dynamics and structures to more recent priorities such as acoustics, materials and signature reduction and to operational issues such as design criteria, safety and reliability. (Note: semi- and nontechnical articles of more general interest reporting current events or experiences should be sent to the VFS magazine