Robust and optimal design of railway vehicle system for derailment risk using efficient global optimisation method

IF 0.5 4区 工程技术 Q4 ENGINEERING, MECHANICAL
Yung Chang Cheng, Cheng Kang Lee, Chia Ling Hsieh
{"title":"Robust and optimal design of railway vehicle system for derailment risk using efficient global optimisation method","authors":"Yung Chang Cheng, Cheng Kang Lee, Chia Ling Hsieh","doi":"10.1504/ijhvs.2023.134704","DOIUrl":null,"url":null,"abstract":"This paper presents an innovative optimisation procedure, combining uniform design (UD) and the efficient global optimisation (EGO) algorithm, to generate a set of robust suspension parameters in a railway vehicle model. Nonlinear dynamic analysis of a 31 degree-of-freedom (DOF) railway vehicle model was determined using Kalker's linear theory and heuristic nonlinear creep criterion. To increase running safety, optimisation design for suspension parameters is introduced to make the performance more robust and reduce the sensitivity to noise. Considering the noise factors, vehicle speed and rail irregularity, the dynamic response and derailment quotient are obtained by the Runge-Kutta method. By applying uniform design (UD), Kriging interpolation and efficient global optimisation (EGO) algorithm, the best signal-to-noise ratio of the derailment quotient is increased from 12.05 dB to 31.3 dB, or 160%. The numerical results indicate that the optimal and robust design of suspension parameters has been determined successfully by the novel optimisation process.","PeriodicalId":54958,"journal":{"name":"International Journal of Heavy Vehicle Systems","volume":"17 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heavy Vehicle Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijhvs.2023.134704","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an innovative optimisation procedure, combining uniform design (UD) and the efficient global optimisation (EGO) algorithm, to generate a set of robust suspension parameters in a railway vehicle model. Nonlinear dynamic analysis of a 31 degree-of-freedom (DOF) railway vehicle model was determined using Kalker's linear theory and heuristic nonlinear creep criterion. To increase running safety, optimisation design for suspension parameters is introduced to make the performance more robust and reduce the sensitivity to noise. Considering the noise factors, vehicle speed and rail irregularity, the dynamic response and derailment quotient are obtained by the Runge-Kutta method. By applying uniform design (UD), Kriging interpolation and efficient global optimisation (EGO) algorithm, the best signal-to-noise ratio of the derailment quotient is increased from 12.05 dB to 31.3 dB, or 160%. The numerical results indicate that the optimal and robust design of suspension parameters has been determined successfully by the novel optimisation process.
基于高效全局优化方法的轨道车辆脱轨系统鲁棒优化设计
本文提出了一种创新的优化程序,结合均匀设计(UD)和高效全局优化(EGO)算法,生成一组鲁棒的轨道车辆悬架参数。利用Kalker线性理论和启发式非线性蠕变准则对31自由度轨道车辆模型进行了非线性动力学分析。为了提高行驶安全性,引入了悬架参数的优化设计,使其性能更加稳健,降低了对噪声的敏感性。考虑噪声因素、车速因素和轨道不平整度因素,采用龙格-库塔法得到了列车的动力响应和脱轨商。采用均匀设计(UD)、Kriging插值和高效全局优化(EGO)算法,将脱轨商的最佳信噪比从12.05 dB提高到31.3 dB,达到160%。数值结果表明,该优化过程成功地确定了悬架参数的最优鲁棒设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Heavy Vehicle Systems
International Journal of Heavy Vehicle Systems 工程技术-工程:机械
CiteScore
1.30
自引率
0.00%
发文量
17
审稿时长
9 months
期刊介绍: IJHVS provides an authoritative source of information and an international forum in the field of on/off road heavy vehicle systems, including buses. It is a highly professional and refereed journal which forms part of the proceedings of the International Association for Vehicle Design. IAVD is an independent, non-profit, learned society which provides a forum for professionals in both industry and academic institutions to meet, exchange ideas and disseminate knowledge in the field of automotive engineering, technology, and management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信