Zoran Markovic, Milic Eric, Predrag Stefanovic, Ivan Lazovic, Aleksandar Milicevic, Marko Mancic, Milica Jovcevski, Rastko Jovanovic
{"title":"Investigation of velocity distribution in channels and chambers of the electrostatic precipitator at TPP Nikola Tesla Unit A1","authors":"Zoran Markovic, Milic Eric, Predrag Stefanovic, Ivan Lazovic, Aleksandar Milicevic, Marko Mancic, Milica Jovcevski, Rastko Jovanovic","doi":"10.2298/tsci230816244m","DOIUrl":null,"url":null,"abstract":"To achieve the optimum dust removal performance of an electrostatic precipitator, the flue gas should be distributed uniformly over its vertical cross-section. The flow in the upstream flue gas ducts has a significant influence on the downstream gas distribution in the chamber of the precipitator. This paper presents the results of homogeneity assessment of velocity distribution in the ducts and vertical cross-sections of the electrostatic precipitator of unit A1 at the Nikola Tesla thermal power plant in Obrenovac. The measurements confirmed that the reconstruction of the vertical chamber at the front of the precipitator, which was carried out during the overhaul in 2020, effectively solved the problem of the original asymmetric arrangement of the vertical flue gas ducts. Nevertheless, the analysis revealed poor homogeneity of the flow field through the chambers. Therefore, additional measures must be taken to increase the dust removal efficiency of the precipitator.","PeriodicalId":23125,"journal":{"name":"Thermal Science","volume":"18 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/tsci230816244m","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
To achieve the optimum dust removal performance of an electrostatic precipitator, the flue gas should be distributed uniformly over its vertical cross-section. The flow in the upstream flue gas ducts has a significant influence on the downstream gas distribution in the chamber of the precipitator. This paper presents the results of homogeneity assessment of velocity distribution in the ducts and vertical cross-sections of the electrostatic precipitator of unit A1 at the Nikola Tesla thermal power plant in Obrenovac. The measurements confirmed that the reconstruction of the vertical chamber at the front of the precipitator, which was carried out during the overhaul in 2020, effectively solved the problem of the original asymmetric arrangement of the vertical flue gas ducts. Nevertheless, the analysis revealed poor homogeneity of the flow field through the chambers. Therefore, additional measures must be taken to increase the dust removal efficiency of the precipitator.
期刊介绍:
The main aims of Thermal Science
to publish papers giving results of the fundamental and applied research in different, but closely connected fields:
fluid mechanics (mainly turbulent flows), heat transfer, mass transfer, combustion and chemical processes
in single, and specifically in multi-phase and multi-component flows
in high-temperature chemically reacting flows
processes present in thermal engineering, energy generating or consuming equipment, process and chemical engineering equipment and devices, ecological engineering,
The important characteristic of the journal is the orientation to the fundamental results of the investigations of different physical and chemical processes, always jointly present in real conditions, and their mutual influence. To publish papers written by experts from different fields: mechanical engineering, chemical engineering, fluid dynamics, thermodynamics and related fields. To inform international scientific community about the recent, and most prominent fundamental results achieved in the South-East European region, and particularly in Serbia, and - vice versa - to inform the scientific community from South-East European Region about recent fundamental and applied scientific achievements in developed countries, serving as a basis for technology development. To achieve international standards of the published papers, by the engagement of experts from different countries in the International Advisory board.