Optimal motion planning of hopping robot based on pseudospectral method during flight phase

IF 0.3 4区 工程技术 Q4 ENGINEERING, MULTIDISCIPLINARY
N. Yingge, M. Xiangyan, Y. Ni
{"title":"Optimal motion planning of hopping robot based on pseudospectral method during flight phase","authors":"N. Yingge, M. Xiangyan, Y. Ni","doi":"10.23967/j.rimni.2023.09.002","DOIUrl":null,"url":null,"abstract":"The energy optimal motion planning of a hopping robot with three links is investigated in the flight phase. Firstly, the conservation equation of angular momentum of the hopping robot in the flight phase is established which is a nonholonomic constraint. Then the energy consumption of the robot in the flight phase is selected as the optimization goal. Given the initial and terminal positions, the Gaussian pseudospectrum method is used to solve the optimal control problem. The simulation results show that the initial angular momentum has a great influence on the performance of the hopping robot. With the zero initial angular momentum, although the flight time can be selected arbitrarily, the greater the flight time, the smaller the energy consumption, the force required by the robot is greater. Thus, it is necessary to select an appropriate value.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/j.rimni.2023.09.002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The energy optimal motion planning of a hopping robot with three links is investigated in the flight phase. Firstly, the conservation equation of angular momentum of the hopping robot in the flight phase is established which is a nonholonomic constraint. Then the energy consumption of the robot in the flight phase is selected as the optimization goal. Given the initial and terminal positions, the Gaussian pseudospectrum method is used to solve the optimal control problem. The simulation results show that the initial angular momentum has a great influence on the performance of the hopping robot. With the zero initial angular momentum, although the flight time can be selected arbitrarily, the greater the flight time, the smaller the energy consumption, the force required by the robot is greater. Thus, it is necessary to select an appropriate value.
基于伪谱法的跳跃机器人飞行阶段最优运动规划
研究了三连杆跳跃机器人在飞行阶段的能量最优运动规划问题。首先,建立了跳跃机器人在飞行阶段的角动量守恒方程,该方程为非完整约束;然后选择机器人在飞行阶段的能量消耗作为优化目标。在给定初始位置和终端位置的情况下,采用高斯伪谱法求解最优控制问题。仿真结果表明,初始角动量对跳跃机器人的性能影响很大。在初始角动量为零的情况下,虽然飞行时间可以任意选择,但飞行时间越大,能量消耗越小,机器人所需的力就越大。因此,有必要选择一个合适的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
26
审稿时长
6 months
期刊介绍: International Journal of Numerical Methods for Calculation and Design in Engineering (RIMNI) contributes to the spread of theoretical advances and practical applications of numerical methods in engineering and other applied sciences. RIMNI publishes articles written in Spanish, Portuguese and English. The scope of the journal includes mathematical and numerical models of engineering problems, development and application of numerical methods, advances in software, computer design innovations, educational aspects of numerical methods, etc. RIMNI is an essential source of information for scientifics and engineers in numerical methods theory and applications. RIMNI contributes to the interdisciplinar exchange and thus shortens the distance between theoretical developments and practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信