Leveraging Natural Language Processing Algorithms to Understand the Impact of the COVID

Syed Shoeb Ahmed -, Mohammed Sohaib Zahoor -, Syed Shadab -, M. Shilpa -
{"title":"Leveraging Natural Language Processing Algorithms to Understand the Impact of the COVID","authors":"Syed Shoeb Ahmed -, Mohammed Sohaib Zahoor -, Syed Shadab -, M. Shilpa -","doi":"10.37082/ijirmps.v11.i1.230315","DOIUrl":null,"url":null,"abstract":"Understanding the effects of a pandemic on the public sentiment is an important challenge in the study of social dynamics during a global pandemic. This paper puts forward a case study that throws light on the psychological impact of the COVID-19 pandemic on the people living in the Indian subcontinent. The study is based on a pipeline that involves pre-processing, sentiment analysis, topic modelling, natural language processing and statistical analysis of Twitter data extracted in the form of tweets. The results demonstrate the effectiveness of this pipeline in understanding the temporal impact of the different lockdowns implemented in the span of the pandemic on the public sentiment, which can be useful for healthcare workers, authorities, and researchers.","PeriodicalId":246139,"journal":{"name":"International Journal of Innovative Research in Engineering & Multidisciplinary Physical Sciences","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovative Research in Engineering & Multidisciplinary Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37082/ijirmps.v11.i1.230315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the effects of a pandemic on the public sentiment is an important challenge in the study of social dynamics during a global pandemic. This paper puts forward a case study that throws light on the psychological impact of the COVID-19 pandemic on the people living in the Indian subcontinent. The study is based on a pipeline that involves pre-processing, sentiment analysis, topic modelling, natural language processing and statistical analysis of Twitter data extracted in the form of tweets. The results demonstrate the effectiveness of this pipeline in understanding the temporal impact of the different lockdowns implemented in the span of the pandemic on the public sentiment, which can be useful for healthcare workers, authorities, and researchers.
利用自然语言处理算法了解COVID的影响
了解大流行对公众情绪的影响是研究全球大流行期间社会动态的一项重要挑战。本文提出了一个案例研究,揭示了2019冠状病毒病大流行对印度次大陆人民的心理影响。这项研究基于一个管道,包括预处理、情感分析、主题建模、自然语言处理和以推文形式提取的推特数据的统计分析。结果表明,这一渠道在理解疫情期间实施的不同封锁对公众情绪的时间影响方面是有效的,这对医护人员、当局和研究人员来说是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信