Mohamed Al-Sideque Zainuddin, Muhammad Abdullah, Salmiah Ahmad, Mohd Suhaimi Uzir, Zaid Mujaiyid Putra Ahmad Baidowi
{"title":"Performance Analysis of Predictive Functional Control for Automobile Adaptive Cruise Control System","authors":"Mohamed Al-Sideque Zainuddin, Muhammad Abdullah, Salmiah Ahmad, Mohd Suhaimi Uzir, Zaid Mujaiyid Putra Ahmad Baidowi","doi":"10.31436/iiumej.v24i1.2341","DOIUrl":null,"url":null,"abstract":"This paper presents the performance analysis of Predictive Functional Control (PFC) for Adaptive Cruise Control (ACC) application. To cope with multiple driving objectives of modern ACC systems such as passenger comfort, safe distancing, and fast time response, an advanced optimal controller such as Model Predictive Control (MPC) is often used. Nevertheless, MPC requires a high computation load due to its complex formulation and may overload the processing power of a microcontroller. Thus, the prime objective of this work is to propose a PFC algorithm as an alternative controller, while providing a formal comparison between MPC and the traditional Proportional Integral (PI) controller. A standard kinematic model for vehicle longitudinal dynamics was modelled and used to derive the control law of PFC. Since the open-loop dynamic of the derived transfer function is not stable, the second objective is to propose a pre-stabilized loop or cascade PFC structure for the system. A complete tuning procedure and analysis were presented. The simulation result shows that although MPC performance is the best for the ACC application with Root Mean Square Error (RMSE) of 1.4873, PFC has shown a promising response with RMSE of 1.5501, which is better compared to the PI controller with RMSE of 1.6219. All the imposed driving constraints such as maximum acceleration, maximum deceleration and safe distance were satisfied in the car following application. Thus, the findings from this work can become a good initial motivation to further explore the capability of the PFC algorithm for future ACC development. ABSTRAK: Kajian ini adalah berkenaan analisis prestasi Kawalan Fungsi Ramalan (PFC) aplikasi Kawalan Mudah Suai (ACC). Bagi memenuhi pelbagai keperluan objektif sistem pemanduan moden ACC seperti keselesaan penumpang, penjarakan selamat dan tindak balas pantas, kawalan optimum terbaru seperti Model Kawalan Ramalan (MPC) sering digunakan. Walau bagaimanapun, MPC memerlukan beban pengiraan tinggi kerana rumusnya yang kompleks dan mungkin mengakibatkan beban berlebihan kuasa pemprosesan mikrokawalan. Oleh itu, matlamat utama kajian ini adalah bagi mencadangkan algoritma PFC yang mempunyai pengiraan mudah sebagai kawalan alternatif, sementara menyediakan perbandingan formal antara MPC dan kawalan tradisional Berkadar Keseluruhan (PI). Oleh kerana model ini tidak stabil, objektif kedua adalah mencadangkan penggunaan struktur PFC berlapis bagi menstabilkan sistem terlebih dahulu sebelum algorithma kawalan digunakan atau dengan menggunakan struktur PFC secara berturut pada sistem. Prosedur lengkap dan terperinci untuk analisis PFC dibentangkan. Dapatan simulasi kajian menunjukkan walaupun prestasi MPC adalah baik bagi aplikasi ACC dengan Ralat Punca Min Kuasa Dua (RMSE) bernilai 1.4873, namun PFC menunjukkan tindak balas baik dengan RMSE bernilai 1.5501 berbanding kawalan PI yang mempunyai RMSE sebanyak 1.6219. Kesemua kekangan seperti pecutan dan nyahpecutan maksima, dan penjarakan selamat bertepatan dengan aplikasi kenderaan ini. Dengan itu, penemuan ini adalah motivasi awal yang baik bagi meneroka lebih jauh keupayaan algoritma PFC bagi membangun ACC pada masa hadapan.","PeriodicalId":13439,"journal":{"name":"IIUM Engineering Journal","volume":"54 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIUM Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31436/iiumej.v24i1.2341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the performance analysis of Predictive Functional Control (PFC) for Adaptive Cruise Control (ACC) application. To cope with multiple driving objectives of modern ACC systems such as passenger comfort, safe distancing, and fast time response, an advanced optimal controller such as Model Predictive Control (MPC) is often used. Nevertheless, MPC requires a high computation load due to its complex formulation and may overload the processing power of a microcontroller. Thus, the prime objective of this work is to propose a PFC algorithm as an alternative controller, while providing a formal comparison between MPC and the traditional Proportional Integral (PI) controller. A standard kinematic model for vehicle longitudinal dynamics was modelled and used to derive the control law of PFC. Since the open-loop dynamic of the derived transfer function is not stable, the second objective is to propose a pre-stabilized loop or cascade PFC structure for the system. A complete tuning procedure and analysis were presented. The simulation result shows that although MPC performance is the best for the ACC application with Root Mean Square Error (RMSE) of 1.4873, PFC has shown a promising response with RMSE of 1.5501, which is better compared to the PI controller with RMSE of 1.6219. All the imposed driving constraints such as maximum acceleration, maximum deceleration and safe distance were satisfied in the car following application. Thus, the findings from this work can become a good initial motivation to further explore the capability of the PFC algorithm for future ACC development. ABSTRAK: Kajian ini adalah berkenaan analisis prestasi Kawalan Fungsi Ramalan (PFC) aplikasi Kawalan Mudah Suai (ACC). Bagi memenuhi pelbagai keperluan objektif sistem pemanduan moden ACC seperti keselesaan penumpang, penjarakan selamat dan tindak balas pantas, kawalan optimum terbaru seperti Model Kawalan Ramalan (MPC) sering digunakan. Walau bagaimanapun, MPC memerlukan beban pengiraan tinggi kerana rumusnya yang kompleks dan mungkin mengakibatkan beban berlebihan kuasa pemprosesan mikrokawalan. Oleh itu, matlamat utama kajian ini adalah bagi mencadangkan algoritma PFC yang mempunyai pengiraan mudah sebagai kawalan alternatif, sementara menyediakan perbandingan formal antara MPC dan kawalan tradisional Berkadar Keseluruhan (PI). Oleh kerana model ini tidak stabil, objektif kedua adalah mencadangkan penggunaan struktur PFC berlapis bagi menstabilkan sistem terlebih dahulu sebelum algorithma kawalan digunakan atau dengan menggunakan struktur PFC secara berturut pada sistem. Prosedur lengkap dan terperinci untuk analisis PFC dibentangkan. Dapatan simulasi kajian menunjukkan walaupun prestasi MPC adalah baik bagi aplikasi ACC dengan Ralat Punca Min Kuasa Dua (RMSE) bernilai 1.4873, namun PFC menunjukkan tindak balas baik dengan RMSE bernilai 1.5501 berbanding kawalan PI yang mempunyai RMSE sebanyak 1.6219. Kesemua kekangan seperti pecutan dan nyahpecutan maksima, dan penjarakan selamat bertepatan dengan aplikasi kenderaan ini. Dengan itu, penemuan ini adalah motivasi awal yang baik bagi meneroka lebih jauh keupayaan algoritma PFC bagi membangun ACC pada masa hadapan.
本文对预测功能控制(PFC)在自适应巡航控制(ACC)中的应用进行了性能分析。为了满足现代自动驾驶系统的多重驾驶目标,如乘客舒适性、安全距离和快速时间响应,通常采用模型预测控制(MPC)等先进的最优控制器。然而,MPC由于其复杂的配方而需要很高的计算负荷,并且可能使微控制器的处理能力过载。因此,这项工作的主要目标是提出一种PFC算法作为替代控制器,同时提供MPC与传统比例积分(PI)控制器之间的正式比较。建立了车辆纵向动力学的标准运动学模型,并利用该模型推导出PFC的控制规律。由于推导出的传递函数的开环动力学不稳定,第二个目标是为系统提出预稳定的环或串级PFC结构。给出了完整的调谐过程和分析。仿真结果表明,虽然MPC在均方根误差(RMSE)为1.4873的ACC应用中性能最好,但PFC在RMSE为1.5501时表现出了良好的响应,优于RMSE为1.6219的PI控制器。在后续应用中,整车满足了最大加速、最大减速和安全距离等要求。因此,这项工作的发现可以成为进一步探索PFC算法在未来ACC发展中的能力的良好初始动机。摘要:对Kawalan Fungsi Ramalan (PFC)和Kawalan Mudah Suai (ACC)进行分析。巴吉memenuhi pelbagai keperluan对象系统、现代ACC分离、penjarakan selamat和tindak balas panas、kawalan最优terbaru分离、模型kawalan Ramalan (MPC)服务于digunakan。Walau bagaimanapun, MPC成员lukan beban pengiraan tinggi kerana rumusnya yang kompleks dan mungkin mengakibatkan beban berlebihan kuasa pemprosesan mikrokawalan。Oleh itu, matlamat utama kajian ini adalah bagi menencadangkan算法PFC yang mempunyai pengiraan mudah sebagai kawalan alternative, sementara menyediakan perbandan和正式的antara MPC dan kawalan传统Berkadar Keseluruhan (PI)。Oleh kerana模型ini - tidak - stabil, object - kedua adalah menencadangkan penggunaan structure - PFC berlapis - bagi - menstabilkan系统,terlebih - dhahulu sebelum算法- kawalan digunakan ataudenan menggunakan structure - PFC secara - bertura系统。检察官冷卡普对PFC问题进行了分析。datatan simulasi kajian menunjukkan walaupun prestasi MPC adalah baik bagi应用的RMSE (RMSE) berilai 1.4873, namun PFC menunjukkan tindak balas baik dengan RMSE berilai 1.5501, kawalan PI yang mempunyai RMSE sebanyak 1.6219。Kesemua kekangan seperti pecutan dan nyahpecutan maksima, dan penjarakan selamat bertepatan dengan应用于kenderaan ini。dancianci.com, ancianci.com, ancianci.com, ancianci.com, ancianci.com, ancianci.com, ancianci.com, ancianci.com。
期刊介绍:
The IIUM Engineering Journal, published biannually (June and December), is a peer-reviewed open-access journal of the Faculty of Engineering, International Islamic University Malaysia (IIUM). The IIUM Engineering Journal publishes original research findings as regular papers, review papers (by invitation). The Journal provides a platform for Engineers, Researchers, Academicians, and Practitioners who are highly motivated in contributing to the Engineering disciplines, and Applied Sciences. It also welcomes contributions that address solutions to the specific challenges of the developing world, and address science and technology issues from an Islamic and multidisciplinary perspective. Subject areas suitable for publication are as follows: -Chemical and Biotechnology Engineering -Civil and Environmental Engineering -Computer Science and Information Technology -Electrical, Computer, and Communications Engineering -Engineering Mathematics and Applied Science -Materials and Manufacturing Engineering -Mechanical and Aerospace Engineering -Mechatronics and Automation Engineering