Ali Hussein Hammad Asal, Saeed Naif Turki Al-Rashid
{"title":"Effects of Quantum Confinement Energy on the Transmittance of Cadmium Telluride (CdTe) Within the Near Infrared Region (700-2500nm)","authors":"Ali Hussein Hammad Asal, Saeed Naif Turki Al-Rashid","doi":"10.26565/2312-4334-2023-3-33","DOIUrl":null,"url":null,"abstract":"This study investigates how the energy of quantum confinement affects the transmittance of cadmium telluride, because of the importance of this substance, as it crystallizes in the form of cubes as thin films that are used in solar cells and liquid crystal imaging devices, as well as in infrared optics [1]. The MATLAB computer program version (2012a) was used, which is based on the characteristic matrix theory and Brus model, in addition to the quantum confinement energy equation. We found that the transmittance value of the nano CdTe thin film at normal incidence reaches 96.4% at a quantum confinement energy Eco = 2.7eV and at a particle size PS =2.6nm, while the value reaches 73.6% at a quantum confinement energy Eco = 0.01eV and at a particle size of PS=50nm.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"East European Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26565/2312-4334-2023-3-33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates how the energy of quantum confinement affects the transmittance of cadmium telluride, because of the importance of this substance, as it crystallizes in the form of cubes as thin films that are used in solar cells and liquid crystal imaging devices, as well as in infrared optics [1]. The MATLAB computer program version (2012a) was used, which is based on the characteristic matrix theory and Brus model, in addition to the quantum confinement energy equation. We found that the transmittance value of the nano CdTe thin film at normal incidence reaches 96.4% at a quantum confinement energy Eco = 2.7eV and at a particle size PS =2.6nm, while the value reaches 73.6% at a quantum confinement energy Eco = 0.01eV and at a particle size of PS=50nm.