X. Li, J. Zhang, W. Yu, L. Liu, W. Wang, Z. Cui, W. Wang, R. Wang, Y. Li
{"title":"How Landscape Patterns Affect River Water Quality Spatially and Temporally: A Multiscale Geographically Weighted Regression Approach","authors":"X. Li, J. Zhang, W. Yu, L. Liu, W. Wang, Z. Cui, W. Wang, R. Wang, Y. Li","doi":"10.3808/jei.202300503","DOIUrl":null,"url":null,"abstract":"The water quality of a river can be considered a function of its surrounding landscape. Understanding the relationship between landscape patterns and river water quality is essential for optimizing landscape patterns to reduce watershed pollution and has not yet been solved. A multiscale geographically weighted regression (MGWR) model was used to explore the associations between the landscape patterns and water quality. Our results showed that landscape metrics have varied relationships with the water quality across spatial scales in different seasons. The strongest independent influencing variable for NO3–-N, NH4+-N, and TN was tea gardens, residential land, and varied seasonally, respectively. The impacts of the landscape metrics on the TP were relatively weak throughout the year at the watershed scale. The influence of landscape metrics on NO3–-N was more significant during the flood season, whereas that on NH4+-N was more notable during the non-flood season. Seasonal changes in the influencing landscape metrics of TN were not regular. Although landscape composition more significantly influenced water quality than configuration, the Shannon’s diversity index and patch density were important configuration indices that significantly impacted water quality. Therefore, with limited land availability, it is essential to optimize the landscape spatial configuration without changing the composition of the watershed to reduce the risk of river pollution. This study further indicated that the MGWR model can well quantify the effects of landscape pattern on water quality at the watershed scale.","PeriodicalId":54840,"journal":{"name":"Journal of Environmental Informatics","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3808/jei.202300503","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The water quality of a river can be considered a function of its surrounding landscape. Understanding the relationship between landscape patterns and river water quality is essential for optimizing landscape patterns to reduce watershed pollution and has not yet been solved. A multiscale geographically weighted regression (MGWR) model was used to explore the associations between the landscape patterns and water quality. Our results showed that landscape metrics have varied relationships with the water quality across spatial scales in different seasons. The strongest independent influencing variable for NO3–-N, NH4+-N, and TN was tea gardens, residential land, and varied seasonally, respectively. The impacts of the landscape metrics on the TP were relatively weak throughout the year at the watershed scale. The influence of landscape metrics on NO3–-N was more significant during the flood season, whereas that on NH4+-N was more notable during the non-flood season. Seasonal changes in the influencing landscape metrics of TN were not regular. Although landscape composition more significantly influenced water quality than configuration, the Shannon’s diversity index and patch density were important configuration indices that significantly impacted water quality. Therefore, with limited land availability, it is essential to optimize the landscape spatial configuration without changing the composition of the watershed to reduce the risk of river pollution. This study further indicated that the MGWR model can well quantify the effects of landscape pattern on water quality at the watershed scale.
期刊介绍:
Journal of Environmental Informatics (JEI) is an international, peer-reviewed, and interdisciplinary publication designed to foster research innovation and discovery on basic science and information technology for addressing various environmental problems. The journal aims to motivate and enhance the integration of science and technology to help develop sustainable solutions that are consensus-oriented, risk-informed, scientifically-based and cost-effective. JEI serves researchers, educators and practitioners who are interested in theoretical and/or applied aspects of environmental science, regardless of disciplinary boundaries. The topics addressed by the journal include:
- Planning of energy, environmental and ecological management systems
- Simulation, optimization and Environmental decision support
- Environmental geomatics - GIS, RS and other spatial information technologies
- Informatics for environmental chemistry and biochemistry
- Environmental applications of functional materials
- Environmental phenomena at atomic, molecular and macromolecular scales
- Modeling of chemical, biological and environmental processes
- Modeling of biotechnological systems for enhanced pollution mitigation
- Computer graphics and visualization for environmental decision support
- Artificial intelligence and expert systems for environmental applications
- Environmental statistics and risk analysis
- Climate modeling, downscaling, impact assessment, and adaptation planning
- Other areas of environmental systems science and information technology.