Mean Lifetimes of ns, np, nd, & nf Levels of N V

IF 1 Q3 PHYSICS, MULTIDISCIPLINARY
Rizwana Siddique, Roohi Zafar, Salman Raza, S.M. Zeeshan Iqbal, Zaheer Uddin
{"title":"Mean Lifetimes of ns, np, nd, &amp; nf Levels of N V","authors":"Rizwana Siddique, Roohi Zafar, Salman Raza, S.M. Zeeshan Iqbal, Zaheer Uddin","doi":"10.26565/2312-4334-2023-3-46","DOIUrl":null,"url":null,"abstract":"Nitrogen is one of the key elements in the evolution and formation of stellar objects. Earth's atmosphere contains 21% oxygen and 78% nitrogen; these two gases give rise to aurora when ions of the solar wind in the ionosphere collide with them. Some aerosols made of nitrogen and oxygen are also found in the atmosphere. Nitrogen, hydrogen, carbon, and oxygen are the main contributors to the origin of life on Earth. The spectrum of nitrogen ion (N V) has been studied using Quantum defect theory (QDT) and Numerical Coulombic approximation (NCA). N V has two electrons in the core, with the nucleus, and one electron outside the core. It makes it hydrogen or lithium-like. In the first part, the energies of the ns, np, nd, and nf up to n < 30 were calculated with the help of QDT. In the second part, the wavelengths were calculated using the energies and line strength parameters using NCA. Very little experimental data on lifetime and transition probability are available; however, Biemont et al. have calculated the lifetime of the 48 levels of N V using coulomb approximation. In this study, we calculated the lifetime of 196 multiplets of N V. The results are compared with the available experimental and theoretical lifetimes; an excellent agreement was found between known lifetimes and calculated in this work. The lifetimes of 100 multiplets are presented for the first time. The lifetimes of each of the Rydberg series of N V were fitted, and a third-degree polynomial represents the lifetimes of each series.","PeriodicalId":42569,"journal":{"name":"East European Journal of Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"East European Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26565/2312-4334-2023-3-46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrogen is one of the key elements in the evolution and formation of stellar objects. Earth's atmosphere contains 21% oxygen and 78% nitrogen; these two gases give rise to aurora when ions of the solar wind in the ionosphere collide with them. Some aerosols made of nitrogen and oxygen are also found in the atmosphere. Nitrogen, hydrogen, carbon, and oxygen are the main contributors to the origin of life on Earth. The spectrum of nitrogen ion (N V) has been studied using Quantum defect theory (QDT) and Numerical Coulombic approximation (NCA). N V has two electrons in the core, with the nucleus, and one electron outside the core. It makes it hydrogen or lithium-like. In the first part, the energies of the ns, np, nd, and nf up to n < 30 were calculated with the help of QDT. In the second part, the wavelengths were calculated using the energies and line strength parameters using NCA. Very little experimental data on lifetime and transition probability are available; however, Biemont et al. have calculated the lifetime of the 48 levels of N V using coulomb approximation. In this study, we calculated the lifetime of 196 multiplets of N V. The results are compared with the available experimental and theoretical lifetimes; an excellent agreement was found between known lifetimes and calculated in this work. The lifetimes of 100 multiplets are presented for the first time. The lifetimes of each of the Rydberg series of N V were fitted, and a third-degree polynomial represents the lifetimes of each series.
ns, np, nd, &nf N - V水平
氮是恒星天体演化和形成的关键元素之一。地球大气中含有21%的氧气和78%的氮气;当电离层中的太阳风离子与这两种气体碰撞时,就会产生极光。在大气中也发现了一些由氮和氧构成的气溶胶。氮、氢、碳和氧是地球上生命起源的主要贡献者。利用量子缺陷理论(QDT)和数值库仑近似(NCA)研究了氮离子(nv)的光谱。nv有两个电子在原子核内,还有一个电子在原子核外。它使它变成氢或锂。在第一部分中,ns, np, nd和nf直到n <的能量;用QDT法计算30个。在第二部分中,利用NCA计算能量和谱线强度参数。关于寿命和跃迁概率的实验数据很少;然而,Biemont等人使用库仑近似计算了48个能级的N - V的寿命。本研究计算了196个N v多胞胎的寿命,并与现有的实验寿命和理论寿命进行了比较;在已知寿命和计算寿命之间发现了极好的一致性。首次展示了100个多胞胎的生命周期。拟合了nv的每一个Rydberg级数的寿命,并用一个三次多项式表示每一个级数的寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
East European Journal of Physics
East European Journal of Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.10
自引率
25.00%
发文量
58
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信