The Gd anchored Bismuth Ferrite: Investigations on Structural and Optical Properties

IF 0.6 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
{"title":"The Gd anchored Bismuth Ferrite: Investigations on Structural and Optical Properties","authors":"","doi":"10.56042/ijpap.v61i9.3500","DOIUrl":null,"url":null,"abstract":"The potential of rare-earth doping to robust structural, magnetic, electric, and optical characteristics of bismuth ferrite (BFO) has prompted an enormous amount of interest in the field of materials science. Gd-substituted BFO were produced in this work utilizing Pechini’s modified Sol-Gel auto combustion technique. The development of a pure perovskite structure was confirmed by X-ray diffraction (XRD), with no secondary phases identified. The lattice parameters were observed to decrease as Gd concentration increased, showing that Gd ions were successfully incorporated into the BFO lattice. The microstructural characteristics of the produced NPs were investigated using the HRTEM to evaluate particle size and shape. UV-Vis spectroscopy was used to analyze the optical characteristics of the NPs, which revealed a reduction in optical bandgap with Gd substitution. The improved optical characteristics can be attributed to a change in the electronic band structure caused by Gd substitution. Overall, Gd-substituted BFO perovskites displays remarkable optical properties, indicating their potential use in optoelectronic devices and as a catalyst for the degradation of synthetic and organic dyes.","PeriodicalId":13509,"journal":{"name":"Indian Journal of Pure & Applied Physics","volume":"20 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure & Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56042/ijpap.v61i9.3500","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The potential of rare-earth doping to robust structural, magnetic, electric, and optical characteristics of bismuth ferrite (BFO) has prompted an enormous amount of interest in the field of materials science. Gd-substituted BFO were produced in this work utilizing Pechini’s modified Sol-Gel auto combustion technique. The development of a pure perovskite structure was confirmed by X-ray diffraction (XRD), with no secondary phases identified. The lattice parameters were observed to decrease as Gd concentration increased, showing that Gd ions were successfully incorporated into the BFO lattice. The microstructural characteristics of the produced NPs were investigated using the HRTEM to evaluate particle size and shape. UV-Vis spectroscopy was used to analyze the optical characteristics of the NPs, which revealed a reduction in optical bandgap with Gd substitution. The improved optical characteristics can be attributed to a change in the electronic band structure caused by Gd substitution. Overall, Gd-substituted BFO perovskites displays remarkable optical properties, indicating their potential use in optoelectronic devices and as a catalyst for the degradation of synthetic and organic dyes.
Gd锚定铋铁氧体的结构和光学性质研究
稀土掺杂对铋铁氧体(BFO)强健的结构、磁性、电学和光学特性的潜力引起了材料科学领域的极大兴趣。利用Pechini改进的溶胶-凝胶自燃烧技术制备了gd取代BFO。x射线衍射(XRD)证实了纯钙钛矿结构的形成,没有发现二次相。随着Gd浓度的增加,晶格参数逐渐减小,表明Gd离子成功进入了BFO晶格。利用HRTEM对制备的纳米粒子的微观结构特征进行了研究,评价了纳米粒子的粒径和形状。紫外-可见光谱分析了NPs的光学特性,发现Gd取代使其光学带隙减小。光学特性的改善可归因于Gd取代引起的电子能带结构的变化。总体而言,gd取代BFO钙钛矿显示出卓越的光学性能,表明它们在光电器件以及作为合成和有机染料降解催化剂方面的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
42
审稿时长
7 months
期刊介绍: Started in 1963, this journal publishes Original Research Contribution as full papers, notes and reviews on classical and quantum physics, relativity and gravitation; statistical physics and thermodynamics; specific instrumentation and techniques of general use in physics, elementary particles and fields, nuclear physics, atomic and molecular physics, fundamental area of phenomenology, optics, acoustics and fluid dynamics, plasmas and electric discharges, condensed matter-structural, mechanical and thermal properties, electronic, structure, electrical, magnetic and optical properties, cross-disciplinary physics and related areas of science and technology, geophysics, astrophysics and astronomy. It also includes latest findings in the subject under News Scan.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信