{"title":"Hole Transport Layer Optimization for Mixed Halide Perovskite based Solar Cells to achieve Better Photovoltaic Performance","authors":"","doi":"10.56042/ijpap.v61i10.2573","DOIUrl":null,"url":null,"abstract":"Methylammonium lead iodide (MAPbI3) has been emerged out as an efficient perovskite absorber material in solar cell applications and extensively studied on both experimental and theoretical fronts. However, these MAPbI3-based perovskite solar cells (PSCs) undergo degradation due to thermal instability of MAPbI3, which in-turn deteriorates the performance of PSC for a long-run. In this work, we deal with the computational analysis of mixed-halide MAPb(I1-xClx)3 based PSCs by changing hole transport layers (HTLs) so that higher efficiency can be aimed. It has been observed that not only the appropriate band alignment of HTL with perovskite, but the mobility of HTL also play a pivotal role in achieving the better photovoltaic (PV) performance. Furthermore, it is noteworthy that Cu2O exhibits a better PV performance in contrast to other HTLs considered in our study. Thus, the present simulation work paves a path for the experimentalists to design similar PSCs by cutting-down the cost of experimental trials.","PeriodicalId":13509,"journal":{"name":"Indian Journal of Pure & Applied Physics","volume":"48 8","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure & Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56042/ijpap.v61i10.2573","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Methylammonium lead iodide (MAPbI3) has been emerged out as an efficient perovskite absorber material in solar cell applications and extensively studied on both experimental and theoretical fronts. However, these MAPbI3-based perovskite solar cells (PSCs) undergo degradation due to thermal instability of MAPbI3, which in-turn deteriorates the performance of PSC for a long-run. In this work, we deal with the computational analysis of mixed-halide MAPb(I1-xClx)3 based PSCs by changing hole transport layers (HTLs) so that higher efficiency can be aimed. It has been observed that not only the appropriate band alignment of HTL with perovskite, but the mobility of HTL also play a pivotal role in achieving the better photovoltaic (PV) performance. Furthermore, it is noteworthy that Cu2O exhibits a better PV performance in contrast to other HTLs considered in our study. Thus, the present simulation work paves a path for the experimentalists to design similar PSCs by cutting-down the cost of experimental trials.
期刊介绍:
Started in 1963, this journal publishes Original Research Contribution as full papers, notes and reviews on classical and quantum physics, relativity and gravitation; statistical physics and thermodynamics; specific instrumentation and techniques of general use in physics, elementary particles and fields, nuclear physics, atomic and molecular physics, fundamental area of phenomenology, optics, acoustics and fluid dynamics, plasmas and electric discharges, condensed matter-structural, mechanical and thermal properties, electronic, structure, electrical, magnetic and optical properties, cross-disciplinary physics and related areas of science and technology, geophysics, astrophysics and astronomy. It also includes latest findings in the subject under News Scan.