{"title":"Suitability of K-doped (CH(NH2)2)x(CH3NH3)1-xPbI3 Perovskite Absorber for Energy Harvesting","authors":"","doi":"10.56042/ijpap.v61i10.2460","DOIUrl":null,"url":null,"abstract":"Formamidinium lead iodide (FAPbI3) based perovskite solar cells are more promising than methylammonium based counterparts due to their higher thermal stability. But FAPbI3 film faces serious issue of photoactive phase instability at room temperature, hindering its usefulness as absorber in perovskite solar cells (PSCs). Recently, this problem has been well addressed through additive engineering. In this work, monovalent-cation engineering of FAPbI3 perovskite via MA+ (methylamine cation) and K+ (potassium cation) mixing is performed. We present a detailed analysis of effect of cation doping on structural and optical properties of formamidine based perovskite material. The structural and optical characterizations show positive effect of cation mixing on phase stabilization, crystallization, and absorbance of perovskite thin films. The crystallite size is found to increase on doping with a maximum for K0.05(FA0.83MA0.17)0.95PbI3 sample. Also, the rise in absorbance in UV-Visible region of electromagnetic spectra is observed with doping.","PeriodicalId":13509,"journal":{"name":"Indian Journal of Pure & Applied Physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure & Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56042/ijpap.v61i10.2460","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Formamidinium lead iodide (FAPbI3) based perovskite solar cells are more promising than methylammonium based counterparts due to their higher thermal stability. But FAPbI3 film faces serious issue of photoactive phase instability at room temperature, hindering its usefulness as absorber in perovskite solar cells (PSCs). Recently, this problem has been well addressed through additive engineering. In this work, monovalent-cation engineering of FAPbI3 perovskite via MA+ (methylamine cation) and K+ (potassium cation) mixing is performed. We present a detailed analysis of effect of cation doping on structural and optical properties of formamidine based perovskite material. The structural and optical characterizations show positive effect of cation mixing on phase stabilization, crystallization, and absorbance of perovskite thin films. The crystallite size is found to increase on doping with a maximum for K0.05(FA0.83MA0.17)0.95PbI3 sample. Also, the rise in absorbance in UV-Visible region of electromagnetic spectra is observed with doping.
期刊介绍:
Started in 1963, this journal publishes Original Research Contribution as full papers, notes and reviews on classical and quantum physics, relativity and gravitation; statistical physics and thermodynamics; specific instrumentation and techniques of general use in physics, elementary particles and fields, nuclear physics, atomic and molecular physics, fundamental area of phenomenology, optics, acoustics and fluid dynamics, plasmas and electric discharges, condensed matter-structural, mechanical and thermal properties, electronic, structure, electrical, magnetic and optical properties, cross-disciplinary physics and related areas of science and technology, geophysics, astrophysics and astronomy. It also includes latest findings in the subject under News Scan.