{"title":"The role of water molecules and its dynamics to the binding site of β-lactamase enzyme with respect to β-lactamase inhibitor","authors":"","doi":"10.56042/ijbb.v60i9.4029","DOIUrl":null,"url":null,"abstract":"β-lactamase hydrolyses amide bond of β-lactam ring. β-lactam antibiotics are the main arsenal in antibiotic regime. High degree of mutation and genetic variation in β-lactamase enzymes have elevated the resistance towards β-lactamase inhibitors. There are 4 classes of β-lactamase, namely Class A, C, and D which are Serine proteases and Class B is the Metallo proteases. The most documented one is TEM, where 4 water molecules (315, 319, 440, 441) play an important role in the binding site. In the present work we have tried to explain the involvement of water molecule with respect to docking behavior with S70 (Serine), E166 (Glutamate) and N170 (Asparagine) along with an important Ω – loop (R161-D179) which allosterically modulate the behavior of the binding site. This will aid us to identify potential candidates as novel antibiotics precisely interacting with the substrate binding site and Ω – loop of β-lactamase and their interaction with these 4 water molecules. We have docked Clavulanic acid (CA), Sulbactam (SB), Tazobactam (TB) with wild (1ZG4) and mutated (1ZG6) TEM in the presence and absence of HOH, which justifies the importance of water molecules playing an important role in the hydrolysis of β-lactam as well as modulating the binding affinity of a potential drug candidate.","PeriodicalId":13281,"journal":{"name":"Indian journal of biochemistry & biophysics","volume":"95 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of biochemistry & biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56042/ijbb.v60i9.4029","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
β-lactamase hydrolyses amide bond of β-lactam ring. β-lactam antibiotics are the main arsenal in antibiotic regime. High degree of mutation and genetic variation in β-lactamase enzymes have elevated the resistance towards β-lactamase inhibitors. There are 4 classes of β-lactamase, namely Class A, C, and D which are Serine proteases and Class B is the Metallo proteases. The most documented one is TEM, where 4 water molecules (315, 319, 440, 441) play an important role in the binding site. In the present work we have tried to explain the involvement of water molecule with respect to docking behavior with S70 (Serine), E166 (Glutamate) and N170 (Asparagine) along with an important Ω – loop (R161-D179) which allosterically modulate the behavior of the binding site. This will aid us to identify potential candidates as novel antibiotics precisely interacting with the substrate binding site and Ω – loop of β-lactamase and their interaction with these 4 water molecules. We have docked Clavulanic acid (CA), Sulbactam (SB), Tazobactam (TB) with wild (1ZG4) and mutated (1ZG6) TEM in the presence and absence of HOH, which justifies the importance of water molecules playing an important role in the hydrolysis of β-lactam as well as modulating the binding affinity of a potential drug candidate.
期刊介绍:
Started in 1964, this journal publishes original research articles in the following areas: structure-function relationships of biomolecules; biomolecular recognition, protein-protein and protein-DNA interactions; gene-cloning, genetic engineering, genome analysis, gene targeting, gene expression, vectors, gene therapy; drug targeting, drug design; molecular basis of genetic diseases; conformational studies, computer simulation, novel DNA structures and their biological implications, protein folding; enzymes structure, catalytic mechanisms, regulation; membrane biochemistry, transport, ion channels, signal transduction, cell-cell communication, glycobiology; receptors, antigen-antibody binding, neurochemistry, ageing, apoptosis, cell cycle control; hormones, growth factors; oncogenes, host-virus interactions, viral assembly and structure; intermediary metabolism, molecular basis of disease processes, vitamins, coenzymes, carrier proteins, toxicology; plant and microbial biochemistry; surface forces, micelles and microemulsions, colloids, electrical phenomena, etc. in biological systems. Solicited peer reviewed articles on contemporary Themes and Methods in Biochemistry and Biophysics form an important feature of IJBB.
Review articles on a current topic in the above fields are also considered. They must dwell more on research work done during the last couple of years in the field and authors should integrate their own work with that of others with acumen and authenticity, mere compilation of references by a third party is discouraged. While IJBB strongly promotes innovative novel research works for publication as full length papers, it also considers research data emanating from limited objectives, and extension of ongoing experimental works as ‘Notes’. IJBB follows “Double Blind Review process” where author names, affiliations and other correspondence details are removed to ensure fare evaluation. At the same time, reviewer names are not disclosed to authors.