{"title":"The exponential sums related to cusp formsin the level aspect","authors":"Fei Hou","doi":"10.7169/facm/2079","DOIUrl":null,"url":null,"abstract":"Let $N$ be a square-free integer. Let $f\\in \\mathcal{B}^\\ast_k(N)$ (or $\\mathcal{B}_\\lambda^\\ast(N)$) be a primitive (either holomorphic or Maaß) cusp form of level $N$, with $\\lambda_f(n)$ denoting the $n$-th Hecke eigenvalue. In this paper, we explicitly determine the dependence on the level aspect for the sum \\[\\sum_{n\\le X}\\lambda_f(n) e{\\left(n^2\\alpha+n\\beta \\right)},\\] which is uniform in any $\\alpha,\\beta\\in \\R$ and $X\\ge 2$. In addition, we also investigate the analog at the prime arguments.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/2079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $N$ be a square-free integer. Let $f\in \mathcal{B}^\ast_k(N)$ (or $\mathcal{B}_\lambda^\ast(N)$) be a primitive (either holomorphic or Maaß) cusp form of level $N$, with $\lambda_f(n)$ denoting the $n$-th Hecke eigenvalue. In this paper, we explicitly determine the dependence on the level aspect for the sum \[\sum_{n\le X}\lambda_f(n) e{\left(n^2\alpha+n\beta \right)},\] which is uniform in any $\alpha,\beta\in \R$ and $X\ge 2$. In addition, we also investigate the analog at the prime arguments.