Synthetization and Characterization of Mg-doped SnSe with Mg Substitution at the Sn Site by High Energy Ball Milling Technique

Pub Date : 2023-01-01 DOI:10.56042/ijpap.v61i9.3494
{"title":"Synthetization and Characterization of Mg-doped SnSe with Mg Substitution at the Sn Site by High Energy Ball Milling Technique","authors":"","doi":"10.56042/ijpap.v61i9.3494","DOIUrl":null,"url":null,"abstract":"Tin selenide (SnSe) is a semiconductor with an orthorhombic crystal structure having an indirect and direct band gap of 0.9 eV and 1.3 eV respectively. The SnSe and Mg-doped SnSe was synthesized by high energy ball milling technique at 300 RPM for 22 hrs. The formation of pure orthorhombic phases of SnSe and Mg-doped SnSe were confirmed by X-ray diffraction (XRD). From the XRD pattern, the crystalline size was estimated which lies below ~10 nm. The morphology of particle size distribution was carried out by scanning electron microscopy (SEM).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56042/ijpap.v61i9.3494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tin selenide (SnSe) is a semiconductor with an orthorhombic crystal structure having an indirect and direct band gap of 0.9 eV and 1.3 eV respectively. The SnSe and Mg-doped SnSe was synthesized by high energy ball milling technique at 300 RPM for 22 hrs. The formation of pure orthorhombic phases of SnSe and Mg-doped SnSe were confirmed by X-ray diffraction (XRD). From the XRD pattern, the crystalline size was estimated which lies below ~10 nm. The morphology of particle size distribution was carried out by scanning electron microscopy (SEM).
分享
查看原文
高能球磨法合成含镁SnSe及表征
硒化锡(SnSe)是一种具有正交晶体结构的半导体,其间接带隙和直接带隙分别为0.9 eV和1.3 eV。采用高能球磨技术,在300 RPM的转速下合成SnSe和掺杂mg的SnSe。通过x射线衍射(XRD)证实了SnSe和mg掺杂SnSe的纯正交相的形成。通过XRD谱图估计了晶体尺寸在~10 nm以下。采用扫描电子显微镜(SEM)对其粒度分布进行了形貌分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信