Tao Huang, Yang Luo, Quanliang Jiang, Zhigang Zhang, Hao Yang, Changchun Huang
{"title":"Synergistic impacts of climate change and human activities on spatiotemporal organic nitrogen burial variation in a plateau lake in southwest China","authors":"Tao Huang, Yang Luo, Quanliang Jiang, Zhigang Zhang, Hao Yang, Changchun Huang","doi":"10.1080/20442041.2023.2208515","DOIUrl":null,"url":null,"abstract":"ABSTRACTThe concentration and sources of organic nitrogen (ON) in lake sediments affect lake nitrogen cycles. However, the factors influencing ON accumulation rate (ONAR) are unclear. We collected 3 sediment cores from northern, eastern, and southern Dianchi Lake (DC-N, DC-E, and DC-S, respectively) in July 2014, to study the effects of autochthonous and allochthonous sources of ON. The ON and ONAR increased 2.4–5.1 and 2.6–4.8 times, respectively, from 1900 to 2000, especially since the 1980s, when algal blooms have occurred more frequently. The ON decreased in the order DC-S > DC-N > DC-E, whereas the ONAR decreased in the order DC-N > DC-S > DC-E, suggesting that ONAR was influenced by ON content as well as the depositional environment. The total concentrations of n-alkanes (n-C12 to n-C34) ranged from 4719 to 61 960 ng g−1 in the 3 sediment cores, with proportions varying with vertical depth. The sources of ON were mainly allochthonous (soil erosion and terrestrial plants) and autochthonous (algal and aquatic plants) in DC-S and DC-N, respectively, and primarily mixed planktonic and terrestrial in DC-E. The stochastic impacts by regression on population, affluence, and technology (STIRPAT) model revealed that a 1% increase in air temperature and nitrogen fertilizer corresponded to an increase in ONAR by 23–33% and 20–79% in the Dianchi Lake basin, especially in DC-S and DC-E. However, a 1% increase in urban land area reduced ONAR by 2–11%, especially in DC-N. Our study suggests that the spatial and temporal ONAR in Dianchi Lake may increase in response to a warmer and wetter climate combined with increasing chemical nitrogen fertilizer application.KEYWORDS: algal bloomsDianchi Lakehuman activitiesn-alkanesorganic nitrogenSTIRPAT model AcknowledgementsWe thank Editage (www.editage.cn) for English language editing. We also sincerely thank the 2 anonymous reviewers and Associate Editor Dr. Grant Douglas for their constructive comments to improve the readability and scientific presentation of this manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was funded by the National Natural Science Foundation of China (Grant No. 41971009, 41503054, 41971286 and 41773097), and the Youth Top Talent funded by Nanjing Normal University.","PeriodicalId":49061,"journal":{"name":"Inland Waters","volume":"16 1","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inland Waters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20442041.2023.2208515","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTThe concentration and sources of organic nitrogen (ON) in lake sediments affect lake nitrogen cycles. However, the factors influencing ON accumulation rate (ONAR) are unclear. We collected 3 sediment cores from northern, eastern, and southern Dianchi Lake (DC-N, DC-E, and DC-S, respectively) in July 2014, to study the effects of autochthonous and allochthonous sources of ON. The ON and ONAR increased 2.4–5.1 and 2.6–4.8 times, respectively, from 1900 to 2000, especially since the 1980s, when algal blooms have occurred more frequently. The ON decreased in the order DC-S > DC-N > DC-E, whereas the ONAR decreased in the order DC-N > DC-S > DC-E, suggesting that ONAR was influenced by ON content as well as the depositional environment. The total concentrations of n-alkanes (n-C12 to n-C34) ranged from 4719 to 61 960 ng g−1 in the 3 sediment cores, with proportions varying with vertical depth. The sources of ON were mainly allochthonous (soil erosion and terrestrial plants) and autochthonous (algal and aquatic plants) in DC-S and DC-N, respectively, and primarily mixed planktonic and terrestrial in DC-E. The stochastic impacts by regression on population, affluence, and technology (STIRPAT) model revealed that a 1% increase in air temperature and nitrogen fertilizer corresponded to an increase in ONAR by 23–33% and 20–79% in the Dianchi Lake basin, especially in DC-S and DC-E. However, a 1% increase in urban land area reduced ONAR by 2–11%, especially in DC-N. Our study suggests that the spatial and temporal ONAR in Dianchi Lake may increase in response to a warmer and wetter climate combined with increasing chemical nitrogen fertilizer application.KEYWORDS: algal bloomsDianchi Lakehuman activitiesn-alkanesorganic nitrogenSTIRPAT model AcknowledgementsWe thank Editage (www.editage.cn) for English language editing. We also sincerely thank the 2 anonymous reviewers and Associate Editor Dr. Grant Douglas for their constructive comments to improve the readability and scientific presentation of this manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was funded by the National Natural Science Foundation of China (Grant No. 41971009, 41503054, 41971286 and 41773097), and the Youth Top Talent funded by Nanjing Normal University.
期刊介绍:
Inland Waters is the peer-reviewed, scholarly outlet for original papers that advance science within the framework of the International Society of Limnology (SIL). The journal promotes understanding of inland aquatic ecosystems and their management. Subject matter parallels the content of SIL Congresses, and submissions based on presentations are encouraged.
All aspects of physical, chemical, and biological limnology are appropriate, as are papers on applied and regional limnology. The journal also aims to publish articles resulting from plenary lectures presented at SIL Congresses and occasional synthesis articles, as well as issues dedicated to a particular theme, specific water body, or aquatic ecosystem in a geographical area. Publication in the journal is not restricted to SIL members.