Anticancer Potential of Novel Nanoemulgel Formulations in Melanoma

Q3 Pharmacology, Toxicology and Pharmaceutics
Selin Seda TİMUR
{"title":"Anticancer Potential of Novel Nanoemulgel Formulations in Melanoma","authors":"Selin Seda TİMUR","doi":"10.55262/fabadeczacilik.1338677","DOIUrl":null,"url":null,"abstract":"Melanoma is classified as one of the most common cancers with an increasing incidence rate and the conventional treatment options that come with undesirable effects decrease the life quality of patients. Herein, as an alternative therapy option for systemic administration, Carbopol-based nanoemulgel formulations for local delivery were designed. Topical drug delivery systems containing Oxaliplatin, a cisplatin derivative anticancer drug used in the treatment of colorectal cancers, were evaluated for their potential for melanoma treatment. Nanoemulgel formulations with particle size under 300 nm were prepared and characterized in terms of droplet size, zeta potential and liquid crystal formation. The viscosity, as a critical attribute for topical drug delivery systems, was also evaluated, and pseudoplastic behavior of these novel drug delivery systems were confirmed. The controlled drug release pattern was shown with in vitro drug release studies with a significant difference from oxaliplatin when applied in solution. In vitro cell viability evaluation with L929 mouse fibroblast cell line confirmed the biocompatibility of prepared formulations, and the anticancer effect of novel nanoemulgel formulations were presented in B16-F10 mouse melanoma cell line. In conclusion, the anticancer potential of Oxaliplatin nanoemulgels were shown in vitro as a therapy option for melanoma, and the advantages of emulsion and gel-based drug delivery systems were combined in a nanotechnology platform for effective and patient-friendly application of an anticancer therapy for melanoma.","PeriodicalId":36004,"journal":{"name":"Fabad Journal of Pharmaceutical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fabad Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55262/fabadeczacilik.1338677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Melanoma is classified as one of the most common cancers with an increasing incidence rate and the conventional treatment options that come with undesirable effects decrease the life quality of patients. Herein, as an alternative therapy option for systemic administration, Carbopol-based nanoemulgel formulations for local delivery were designed. Topical drug delivery systems containing Oxaliplatin, a cisplatin derivative anticancer drug used in the treatment of colorectal cancers, were evaluated for their potential for melanoma treatment. Nanoemulgel formulations with particle size under 300 nm were prepared and characterized in terms of droplet size, zeta potential and liquid crystal formation. The viscosity, as a critical attribute for topical drug delivery systems, was also evaluated, and pseudoplastic behavior of these novel drug delivery systems were confirmed. The controlled drug release pattern was shown with in vitro drug release studies with a significant difference from oxaliplatin when applied in solution. In vitro cell viability evaluation with L929 mouse fibroblast cell line confirmed the biocompatibility of prepared formulations, and the anticancer effect of novel nanoemulgel formulations were presented in B16-F10 mouse melanoma cell line. In conclusion, the anticancer potential of Oxaliplatin nanoemulgels were shown in vitro as a therapy option for melanoma, and the advantages of emulsion and gel-based drug delivery systems were combined in a nanotechnology platform for effective and patient-friendly application of an anticancer therapy for melanoma.
新型纳米凝胶制剂在黑色素瘤中的抗癌潜力
黑色素瘤是最常见的癌症之一,发病率越来越高,传统的治疗方法会带来不良影响,降低患者的生活质量。在此,作为系统给药的替代治疗选择,设计了基于碳水化合物的局部给药纳米凝胶配方。局部给药系统含有奥沙利铂(一种用于治疗结直肠癌的顺铂衍生物抗癌药物),评估其治疗黑色素瘤的潜力。制备了粒径在300 nm以下的纳米乳液配方,并从液滴大小、zeta电位和液晶形成等方面对其进行了表征。作为局部给药系统的关键属性,粘度也被评估,并证实了这些新型给药系统的假塑性行为。体外药物释放研究显示,与奥沙利铂溶液应用时的药物释放模式有显著差异。用L929小鼠成纤维细胞系进行体外细胞活力评价,证实了制剂的生物相容性,并对B16-F10小鼠黑色素瘤细胞系进行了抑癌实验。总之,奥沙利铂纳米凝胶在体外作为黑色素瘤的治疗选择显示出抗癌潜力,并且将乳液和凝胶为基础的药物输送系统的优势结合在纳米技术平台上,有效且对患者友好地应用于黑色素瘤的抗癌治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fabad Journal of Pharmaceutical Sciences
Fabad Journal of Pharmaceutical Sciences Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
0.80
自引率
0.00%
发文量
12
期刊介绍: The FABAD Journal of Pharmaceutical Sciences is published triannually by the Society of Pharmaceutical Sciences of Ankara (FABAD). All expressions of opinion and statements of supposed facts appearing in articles and/or advertisiments carried in this journal are published on the responsibility of the author and/or advertiser, anda re not to be regarded those of the Society of Pharmaceutical Sciences of Ankara. The manuscript submitted to the Journal has the requirement of not being published previously and has not been submitted elsewhere. Manuscripts should be prepared in accordance with the requirements specified as given in detail in the section of “Information for Authors”. The submission of the manuscript to the Journal is not a condition for acceptance; articles are accepted or rejected on merit alone. All rights reserved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信