Sharp Hardy–Sobolev–Maz’ya, Adams and Hardy–Adams inequalities on quaternionic hyperbolic spaces and on the Cayley hyperbolic plane

IF 1.3 2区 数学 Q1 MATHEMATICS
Joshua Flynn, Guozhen Lu, Qiaohua Yang
{"title":"Sharp Hardy–Sobolev–Maz’ya, Adams and Hardy–Adams inequalities on quaternionic hyperbolic spaces and on the Cayley hyperbolic plane","authors":"Joshua Flynn, Guozhen Lu, Qiaohua Yang","doi":"10.4171/rmi/1444","DOIUrl":null,"url":null,"abstract":"The main purpose of this paper is to establish the higher order Poincaré– Sobolev and Hardy–Sobolev–Maz’ya inequalities on quaternionic hyperbolic spaces and on the Cayley hyperbolic plane using the Helgason–Fourier analysis on symmetric spaces. A crucial part of our work is to establish appropriate factorization theorems on these spaces, which can be of independent interest. To this end, we need to identify and introduce the “quaternionic Geller operators” and the “octonionic Geller operators”, which have been absent on these spaces. Combining the factorization theorems and the Geller type operators with the Helgason–Fourier analysis on symmetric spaces, some precise estimates for the heat and the Bessel–Green– Riesz kernels, and the Kunze–Stein phenomenon for connected real simple groups of real rank one with finite center, we succeed to establish the higher order Poincaré– Sobolev and Hardy–Sobolev–Maz’ya inequalities on quaternionic hyperbolic spaces and on the Cayley hyperbolic plane. The kernel estimates required to prove these inequalities are also sufficient to establish the Adams and Hardy–Adams inequalities on these spaces. This paper, together with our earlier works on real and complex hyperbolic spaces, completes our study of the factorization theorems, higher order Poincaré–Sobolev, Hardy–Sobolev–Maz’ya, Adams and Hardy–Adams inequalities on all rank one symmetric spaces of noncompact type.","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":"42 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rmi/1444","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

The main purpose of this paper is to establish the higher order Poincaré– Sobolev and Hardy–Sobolev–Maz’ya inequalities on quaternionic hyperbolic spaces and on the Cayley hyperbolic plane using the Helgason–Fourier analysis on symmetric spaces. A crucial part of our work is to establish appropriate factorization theorems on these spaces, which can be of independent interest. To this end, we need to identify and introduce the “quaternionic Geller operators” and the “octonionic Geller operators”, which have been absent on these spaces. Combining the factorization theorems and the Geller type operators with the Helgason–Fourier analysis on symmetric spaces, some precise estimates for the heat and the Bessel–Green– Riesz kernels, and the Kunze–Stein phenomenon for connected real simple groups of real rank one with finite center, we succeed to establish the higher order Poincaré– Sobolev and Hardy–Sobolev–Maz’ya inequalities on quaternionic hyperbolic spaces and on the Cayley hyperbolic plane. The kernel estimates required to prove these inequalities are also sufficient to establish the Adams and Hardy–Adams inequalities on these spaces. This paper, together with our earlier works on real and complex hyperbolic spaces, completes our study of the factorization theorems, higher order Poincaré–Sobolev, Hardy–Sobolev–Maz’ya, Adams and Hardy–Adams inequalities on all rank one symmetric spaces of noncompact type.
四元元双曲空间和Cayley双曲平面上的Hardy-Sobolev-Maz 'ya, Adams和Hardy-Adams不等式
本文的主要目的是利用对称空间上的Helgason-Fourier分析,建立四元双曲空间和Cayley双曲平面上的高阶poincar - Sobolev不等式和Hardy-Sobolev-Maz 'ya不等式。我们工作的一个关键部分是在这些空间上建立适当的分解定理,这可能是独立的兴趣。为此,我们需要识别和引入“四元格勒算子”和“八元格勒算子”,它们在这些空间中是不存在的。结合分解定理和Geller型算子、对称空间上的Helgason-Fourier分析、热核和Bessel-Green - Riesz核的一些精确估计,以及中心有限的实秩1连通实简单群的Kunze-Stein现象,成功地建立了四元双曲空间和Cayley双曲平面上的高阶poincar - Sobolev和Hardy-Sobolev-Maz 'ya不等式。证明这些不等式所需的核估计也足以在这些空间上建立Adams和Hardy-Adams不等式。本文结合我们之前关于实双曲空间和复双曲空间的研究,完成了非紧型对称空间上的分解定理、高阶poincar - sobolev、Hardy-Sobolev-Maz 'ya、Adams和Hardy-Adams不等式的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
61
审稿时长
>12 weeks
期刊介绍: Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信