{"title":"Multiscale Numerical Schemes for the Collisional Vlasov Equation in the Finite Larmor Radius Approximation Regime","authors":"Anaïs Crestetto, Nicolas Crouseilles, Damien Prel","doi":"10.1137/22m1496839","DOIUrl":null,"url":null,"abstract":"This work is devoted to the construction of multiscale numerical schemes efficient in the finite Larmor radius approximation of the collisional Vlasov equation. Following the paper of Bostan and Finot [Commun. Contemp. Math., 22 (2020), 1950047], the system involves two different regimes, a highly oscillatory and a dissipative regime, whose asymptotic limits do not commute. In this work, we consider a Particle-in-Cell discretization of the collisional Vlasov system which enables us to deal with the multiscale characteristics equations. Different multiscale time integrators are then constructed and analyzed. We prove asymptotic properties of these schemes in the highly oscillatory regime and in the collisional regime. In particular, the asymptotic preserving property towards the modified equilibrium of the averaged collision operator is recovered. Numerical experiments are then shown to illustrate the properties of the numerical schemes.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1496839","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work is devoted to the construction of multiscale numerical schemes efficient in the finite Larmor radius approximation of the collisional Vlasov equation. Following the paper of Bostan and Finot [Commun. Contemp. Math., 22 (2020), 1950047], the system involves two different regimes, a highly oscillatory and a dissipative regime, whose asymptotic limits do not commute. In this work, we consider a Particle-in-Cell discretization of the collisional Vlasov system which enables us to deal with the multiscale characteristics equations. Different multiscale time integrators are then constructed and analyzed. We prove asymptotic properties of these schemes in the highly oscillatory regime and in the collisional regime. In particular, the asymptotic preserving property towards the modified equilibrium of the averaged collision operator is recovered. Numerical experiments are then shown to illustrate the properties of the numerical schemes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.