{"title":"Landscape complexity beyond invariance and the elastic manifold","authors":"Gérard Ben Arous, Paul Bourgade, Benjamin McKenna","doi":"10.1002/cpa.22146","DOIUrl":null,"url":null,"abstract":"<p>This paper characterizes the annealed, topological complexity (both of total critical points and of local minima) of the elastic manifold. This classical model of a disordered elastic system captures point configurations with self-interactions in a random medium. We establish the simple versus glassy phase diagram in the model parameters, with these phases separated by a physical boundary known as the Larkin mass, confirming formulas of Fyodorov and Le Doussal. One essential, dynamical, step of the proof also applies to a general signal-to-noise model of soft spins in an anisotropic well, for which we prove a negative-second-moment threshold distinguishing positive from zero complexity. A universal near-critical behavior appears within this phase portrait, namely quadratic near-critical vanishing of the complexity of total critical points, and cubic near-critical vanishing of the complexity of local minima. These two models serve as a paradigm of complexity calculations for Gaussian landscapes exhibiting few distributional symmetries, that is, beyond the invariant setting. The two main inputs for the proof are determinant asymptotics for non-invariant random matrices from our companion paper (Ben Arous, Bourgade, McKenna 2022), and the atypical convexity and integrability of the limiting variational problems.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22146","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 14
Abstract
This paper characterizes the annealed, topological complexity (both of total critical points and of local minima) of the elastic manifold. This classical model of a disordered elastic system captures point configurations with self-interactions in a random medium. We establish the simple versus glassy phase diagram in the model parameters, with these phases separated by a physical boundary known as the Larkin mass, confirming formulas of Fyodorov and Le Doussal. One essential, dynamical, step of the proof also applies to a general signal-to-noise model of soft spins in an anisotropic well, for which we prove a negative-second-moment threshold distinguishing positive from zero complexity. A universal near-critical behavior appears within this phase portrait, namely quadratic near-critical vanishing of the complexity of total critical points, and cubic near-critical vanishing of the complexity of local minima. These two models serve as a paradigm of complexity calculations for Gaussian landscapes exhibiting few distributional symmetries, that is, beyond the invariant setting. The two main inputs for the proof are determinant asymptotics for non-invariant random matrices from our companion paper (Ben Arous, Bourgade, McKenna 2022), and the atypical convexity and integrability of the limiting variational problems.