Landscape complexity beyond invariance and the elastic manifold

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Gérard Ben Arous, Paul Bourgade, Benjamin McKenna
{"title":"Landscape complexity beyond invariance and the elastic manifold","authors":"Gérard Ben Arous,&nbsp;Paul Bourgade,&nbsp;Benjamin McKenna","doi":"10.1002/cpa.22146","DOIUrl":null,"url":null,"abstract":"<p>This paper characterizes the annealed, topological complexity (both of total critical points and of local minima) of the elastic manifold. This classical model of a disordered elastic system captures point configurations with self-interactions in a random medium. We establish the simple versus glassy phase diagram in the model parameters, with these phases separated by a physical boundary known as the Larkin mass, confirming formulas of Fyodorov and Le Doussal. One essential, dynamical, step of the proof also applies to a general signal-to-noise model of soft spins in an anisotropic well, for which we prove a negative-second-moment threshold distinguishing positive from zero complexity. A universal near-critical behavior appears within this phase portrait, namely quadratic near-critical vanishing of the complexity of total critical points, and cubic near-critical vanishing of the complexity of local minima. These two models serve as a paradigm of complexity calculations for Gaussian landscapes exhibiting few distributional symmetries, that is, beyond the invariant setting. The two main inputs for the proof are determinant asymptotics for non-invariant random matrices from our companion paper (Ben Arous, Bourgade, McKenna 2022), and the atypical convexity and integrability of the limiting variational problems.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22146","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 14

Abstract

This paper characterizes the annealed, topological complexity (both of total critical points and of local minima) of the elastic manifold. This classical model of a disordered elastic system captures point configurations with self-interactions in a random medium. We establish the simple versus glassy phase diagram in the model parameters, with these phases separated by a physical boundary known as the Larkin mass, confirming formulas of Fyodorov and Le Doussal. One essential, dynamical, step of the proof also applies to a general signal-to-noise model of soft spins in an anisotropic well, for which we prove a negative-second-moment threshold distinguishing positive from zero complexity. A universal near-critical behavior appears within this phase portrait, namely quadratic near-critical vanishing of the complexity of total critical points, and cubic near-critical vanishing of the complexity of local minima. These two models serve as a paradigm of complexity calculations for Gaussian landscapes exhibiting few distributional symmetries, that is, beyond the invariant setting. The two main inputs for the proof are determinant asymptotics for non-invariant random matrices from our companion paper (Ben Arous, Bourgade, McKenna 2022), and the atypical convexity and integrability of the limiting variational problems.

超越不变和弹性流形的景观复杂性
本文刻画了弹性流形的退火、拓扑复杂性(总临界点和局部极小值)。这个经典的无序弹性系统模型捕捉了随机介质中具有自相互作用的点构型。我们在模型参数中建立了简单与玻璃相图,这些相被称为拉金质量的物理边界分开,证实了Fyodorov和Le Doussal的公式。证明的一个重要的动力学步骤也适用于各向异性井中软自旋的一般信噪模型,为此我们证明了区分正和零复杂性的负秒矩阈值。在这幅相图中出现了一种普遍的近临界行为,即总临界点复杂性的二次近临界消失和局部极小值复杂性的三次近临界消失。这两个模型作为高斯景观复杂性计算的范例,表现出很少的分布对称性,即超出不变设置。证明的两个主要输入是来自我们的同伴论文(Ben Arous, Bourgade, McKenna 2022)的非不变随机矩阵的行列式渐近性,以及极限变分问题的非典型凸性和可积性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信