System of Caputo Fractional Differential Equations with Applications to Predator and Prey Model

Aghalaya S. Vatsala Vatsala, Govinda Pageni
{"title":"System of Caputo Fractional Differential Equations with Applications to Predator and Prey Model","authors":"Aghalaya S. Vatsala Vatsala, Govinda Pageni","doi":"10.32381/jciss.2021.46.1-4.1","DOIUrl":null,"url":null,"abstract":"In this research article, we provide a methodology to solve the three systems of qth order linear Caputo fractional differential equations, where 0 < q < 1. Since the Caputo derivative is in the convolution form, we can apply the Laplace transform technique. The solution of the two linear system can be used as a tool to study the stability of the equilibrium solution of the Lotka-Volterra predator-prey model. We have referenced three system SIR model in this work. Due to the global nature of the Caputo derivative, the solution obtained is closer to the real data than the integer derivative.","PeriodicalId":319777,"journal":{"name":"Journal of Combinatorics, Information & System Sciences","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics, Information & System Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32381/jciss.2021.46.1-4.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this research article, we provide a methodology to solve the three systems of qth order linear Caputo fractional differential equations, where 0 < q < 1. Since the Caputo derivative is in the convolution form, we can apply the Laplace transform technique. The solution of the two linear system can be used as a tool to study the stability of the equilibrium solution of the Lotka-Volterra predator-prey model. We have referenced three system SIR model in this work. Due to the global nature of the Caputo derivative, the solution obtained is closer to the real data than the integer derivative.
Caputo分数阶微分方程组及其在捕食者和猎物模型中的应用
在本文中,我们提供了一种方法来求解三组q阶线性Caputo分数阶微分方程,其中0 <问& lt;1. 由于卡普托导数是卷积形式,我们可以应用拉普拉斯变换技术。这两个线性系统的解可以作为研究Lotka-Volterra捕食者-猎物模型平衡解的稳定性的工具。在本工作中,我们参考了三种系统SIR模型。由于Caputo导数的全局性,得到的解比整型导数更接近实际数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信