Intent- and Fault-based Trajectory Prediction for Cooperative Localization and Collision Avoidance in Swarms

Isabella Torres, Grace Gao
{"title":"Intent- and Fault-based Trajectory Prediction for Cooperative Localization and Collision Avoidance in Swarms","authors":"Isabella Torres, Grace Gao","doi":"10.33012/2023.19470","DOIUrl":null,"url":null,"abstract":"Autonomous multi-agent systems similar to NASA’s CADRE mission could substantially improve the efficiency of robotic exploration on other planets. However, communication challenges pose a large risk to two main capabilities: collision avoidance and active collaborative localization. This work expands on Reachability-based Trajectory Design (RTD), intent prediction, and fault-based planning to develop an approach that improves the robustness of these capabilities under communication loss scenarios. This approach is then validated on turtlebots simulated in Gazebo.","PeriodicalId":498211,"journal":{"name":"Proceedings of the Satellite Division's International Technical Meeting","volume":"439 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Satellite Division's International Technical Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33012/2023.19470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous multi-agent systems similar to NASA’s CADRE mission could substantially improve the efficiency of robotic exploration on other planets. However, communication challenges pose a large risk to two main capabilities: collision avoidance and active collaborative localization. This work expands on Reachability-based Trajectory Design (RTD), intent prediction, and fault-based planning to develop an approach that improves the robustness of these capabilities under communication loss scenarios. This approach is then validated on turtlebots simulated in Gazebo.
基于意图和故障的群体协同定位和避碰轨迹预测
类似于NASA CADRE任务的自主多智能体系统可以大大提高机器人在其他行星上探索的效率。然而,通信挑战给两个主要功能带来了很大的风险:避免碰撞和主动协作定位。这项工作扩展了基于可达性的轨迹设计(RTD)、意图预测和基于故障的计划,以开发一种在通信丢失场景下提高这些功能的鲁棒性的方法。然后在Gazebo中模拟的乌龟机器人上验证了这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信