{"title":"Trusted Inertial Terrain-Aided Navigation (TITAN)","authors":"Tucker Haydon, Todd E. Humphreys","doi":"10.33012/2023.19409","DOIUrl":null,"url":null,"abstract":"The vertical synthetic aperture radar (VSAR) is proposed as a navigation sensor, and a companion navigation algorithm – Trusted Inertial Terrain-Aided Navigation (TITAN) – is introduced. The TITAN algorithm consumes vector range-Doppler measurements produced by a VSAR and correlates them against a local digital terrain elevation map with an extended Kalman filter, enabling accurate navigation without the need for GPS. The navigation accuracy of the VSAR/TITAN combination is quantified with post-processed flight data, and shown to be within 15 meters.","PeriodicalId":498211,"journal":{"name":"Proceedings of the Satellite Division's International Technical Meeting","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Satellite Division's International Technical Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33012/2023.19409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The vertical synthetic aperture radar (VSAR) is proposed as a navigation sensor, and a companion navigation algorithm – Trusted Inertial Terrain-Aided Navigation (TITAN) – is introduced. The TITAN algorithm consumes vector range-Doppler measurements produced by a VSAR and correlates them against a local digital terrain elevation map with an extended Kalman filter, enabling accurate navigation without the need for GPS. The navigation accuracy of the VSAR/TITAN combination is quantified with post-processed flight data, and shown to be within 15 meters.