A. Daag, L. E. Aque, O. Locaba, R. Grutas, R. Solidum
{"title":"Site response measurements and implications to soil liquefaction potential using microtremor H/V in Greater Metro Manila, Philippines","authors":"A. Daag, L. E. Aque, O. Locaba, R. Grutas, R. Solidum","doi":"10.1080/19475705.2023.2256936","DOIUrl":null,"url":null,"abstract":"This research explores the use of microtremor horizontal-to-vertical spectral ratio (H/V) in obtaining site response characteristics and investigating its relationship with soil liquefaction potential in Greater Metro Manila. We performed single station microtremor measurements in 61 sites along with in situ geotechnical techniques to verify liquefaction potential. The resulting 238 spectral curves were classified according to dominant features and subsequently grouped with the calculated liquefaction potential index (LPI) of the soil. Based on a robust comparison of obtained primary parameters, it is revealed that the shape of the H/V curve, its predominant period and relative amplitude are fundamentally linked to the spatial variability and the shear strength of soils. Therefore, areas of high seismic demand can also have high liquefaction potential, and vice versa. We then correlated the predominant period with the LPI of the soil and extracted a boundary using simple statistical techniques to classify high and low potential for liquefaction subsequently validating its use as a complementary tool for rapid site-specific liquefaction assessment. Such findings are a novel contribution to liquefaction studies employing rapid techniques since the application of microtremors to liquefaction in the Philippines has not been practiced extensively.","PeriodicalId":51283,"journal":{"name":"Geomatics Natural Hazards & Risk","volume":"440 1","pages":"0"},"PeriodicalIF":4.5000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomatics Natural Hazards & Risk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19475705.2023.2256936","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This research explores the use of microtremor horizontal-to-vertical spectral ratio (H/V) in obtaining site response characteristics and investigating its relationship with soil liquefaction potential in Greater Metro Manila. We performed single station microtremor measurements in 61 sites along with in situ geotechnical techniques to verify liquefaction potential. The resulting 238 spectral curves were classified according to dominant features and subsequently grouped with the calculated liquefaction potential index (LPI) of the soil. Based on a robust comparison of obtained primary parameters, it is revealed that the shape of the H/V curve, its predominant period and relative amplitude are fundamentally linked to the spatial variability and the shear strength of soils. Therefore, areas of high seismic demand can also have high liquefaction potential, and vice versa. We then correlated the predominant period with the LPI of the soil and extracted a boundary using simple statistical techniques to classify high and low potential for liquefaction subsequently validating its use as a complementary tool for rapid site-specific liquefaction assessment. Such findings are a novel contribution to liquefaction studies employing rapid techniques since the application of microtremors to liquefaction in the Philippines has not been practiced extensively.
期刊介绍:
The aim of Geomatics, Natural Hazards and Risk is to address new concepts, approaches and case studies using geospatial and remote sensing techniques to study monitoring, mapping, risk mitigation, risk vulnerability and early warning of natural hazards.
Geomatics, Natural Hazards and Risk covers the following topics:
- Remote sensing techniques
- Natural hazards associated with land, ocean, atmosphere, land-ocean-atmosphere coupling and climate change
- Emerging problems related to multi-hazard risk assessment, multi-vulnerability risk assessment, risk quantification and the economic aspects of hazards.
- Results of findings on major natural hazards