{"title":"An explainable forecasting system for humanitarian needs assessment","authors":"Rahul Nair, Bo Madsen, Alexander Kjærum","doi":"10.1002/aaai.12133","DOIUrl":null,"url":null,"abstract":"<p>We present a machine learning system for forecasting forced displacement populations deployed at the Danish Refugee Council (DRC). The system, named Foresight, supports long-term forecasts aimed at humanitarian response planning. It is explainable, providing evidence and context supporting the forecast. Additionally, it supports scenarios, whereby analysts are able to generate forecasts under alternative conditions. The system has been in deployment since early 2020 and powers several downstream business functions within DRC. It is central to our annual Global Displacement Report, which informs our response planning. We describe the system, key outcomes, lessons learnt, along with technical limitations and challenges in deploying machine learning systems in the humanitarian sector.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"44 4","pages":"354-362"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12133","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12133","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We present a machine learning system for forecasting forced displacement populations deployed at the Danish Refugee Council (DRC). The system, named Foresight, supports long-term forecasts aimed at humanitarian response planning. It is explainable, providing evidence and context supporting the forecast. Additionally, it supports scenarios, whereby analysts are able to generate forecasts under alternative conditions. The system has been in deployment since early 2020 and powers several downstream business functions within DRC. It is central to our annual Global Displacement Report, which informs our response planning. We describe the system, key outcomes, lessons learnt, along with technical limitations and challenges in deploying machine learning systems in the humanitarian sector.
期刊介绍:
AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.