Ali Dadashiserej, Amalesh Jana, Zhongze Xu, Armin W. Stuedlein, T. Matthew Evans, Kenneth H. Stokoe II, Brady R. Cox
{"title":"Dynamic Response of a Low Plasticity Silt Deposit: Comparison of In-situ and Laboratory Responses","authors":"Ali Dadashiserej, Amalesh Jana, Zhongze Xu, Armin W. Stuedlein, T. Matthew Evans, Kenneth H. Stokoe II, Brady R. Cox","doi":"10.1139/cgj-2022-0579","DOIUrl":null,"url":null,"abstract":"This study compares the in-situ dynamic response of a low plasticity silt deposit subjected to multidirectional loading from vibroseis shaking and controlled blasting to a suite of element-scale, cyclic laboratory test specimens. The agreement between excess pore pressures and simple shear strain relationships over a wide range in strains is remarkable. Slightly larger excess pore pressures observed in-situ are attributed to three-dimensional loading and pore pressure migration/ redistribution in the shallower portions of the deposit. Noted differences in shear modulus, G, are attributed to strain rate effects, spatial variability in the in-situ stiffness, and hydraulic boundary conditions. The variation in in-situ G/Gmax follows the trend from torsional shear specimens up to 0.4% shear strain; larger strains in the silt deposit imposed by controlled blasting yielded a stiffer response than that from cyclic torsional shear and direct simple shear specimens due in part to field drainage for deeper portions of the deposit. The in-situ cyclic resistance ratio for the deeper portion of the deposit in which plane body waves could be assumed and for the selected excess pore pressure ratio criterion was larger than that of stress-controlled CDSS test specimens, despite the detrimental effect of multidirectional shaking in the field. The effect of strain history, spatial variability, and drainage boundary conditions to drive differences between the in-situ and laboratory test specimens is identified.","PeriodicalId":9382,"journal":{"name":"Canadian Geotechnical Journal","volume":"4 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Geotechnical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/cgj-2022-0579","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study compares the in-situ dynamic response of a low plasticity silt deposit subjected to multidirectional loading from vibroseis shaking and controlled blasting to a suite of element-scale, cyclic laboratory test specimens. The agreement between excess pore pressures and simple shear strain relationships over a wide range in strains is remarkable. Slightly larger excess pore pressures observed in-situ are attributed to three-dimensional loading and pore pressure migration/ redistribution in the shallower portions of the deposit. Noted differences in shear modulus, G, are attributed to strain rate effects, spatial variability in the in-situ stiffness, and hydraulic boundary conditions. The variation in in-situ G/Gmax follows the trend from torsional shear specimens up to 0.4% shear strain; larger strains in the silt deposit imposed by controlled blasting yielded a stiffer response than that from cyclic torsional shear and direct simple shear specimens due in part to field drainage for deeper portions of the deposit. The in-situ cyclic resistance ratio for the deeper portion of the deposit in which plane body waves could be assumed and for the selected excess pore pressure ratio criterion was larger than that of stress-controlled CDSS test specimens, despite the detrimental effect of multidirectional shaking in the field. The effect of strain history, spatial variability, and drainage boundary conditions to drive differences between the in-situ and laboratory test specimens is identified.
期刊介绍:
The Canadian Geotechnical Journal features articles, notes, reviews, and discussions related to new developments in geotechnical and geoenvironmental engineering, and applied sciences. The topics of papers written by researchers and engineers/scientists active in industry include soil and rock mechanics, material properties and fundamental behaviour, site characterization, foundations, excavations, tunnels, dams and embankments, slopes, landslides, geological and rock engineering, ground improvement, hydrogeology and contaminant hydrogeology, geochemistry, waste management, geosynthetics, offshore engineering, ice, frozen ground and northern engineering, risk and reliability applications, and physical and numerical modelling.
Contributions that have practical relevance are preferred, including case records. Purely theoretical contributions are not generally published unless they are on a topic of special interest (like unsaturated soil mechanics or cold regions geotechnics) or they have direct practical value.