{"title":"A contact analysis for unconventional mounting processes of angular ball bearings","authors":"Simone Dreon, Lorenzo Scalera, Enrico Salvati","doi":"10.1007/s10999-023-09683-4","DOIUrl":null,"url":null,"abstract":"<div><p>Rigorous protocols must be followed when mounting ball bearings to avoid structural damage and subsequent malfunctioning or unexpected failures. Unconventional mounting procedures may produce excessive contact pressures between the elements of the bearing, therefore the whole process must be well-understood and modelled to prevent unwanted effects. Specifically for angular ball bearings, fitting axial forces should always be applied over the raceway subjected to the shrink-fit to avoid contact forces arising on the ball. In the present study, such an axial force is applied unconventionally, such that the axial force is transferred to the shrink-fit raceway through the balls. In this scenario, the evaluation of the contact areas and the pressure distributions is accomplished by exploiting both analytical and FEM approaches, supported by bespoke experimental tests to determine the relevant frictional coefficients and mounting forces. The study demonstrated how analytical methods can successfully replace more demanding FEM-based tools for the evaluation of the bearing mounting force and contact pressure and extent. FEM modelling can, however, be more accurate when dealing with more generic boundary conditions and more intricate geometrical features involved.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"20 3","pages":"429 - 443"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10999-023-09683-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-023-09683-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Rigorous protocols must be followed when mounting ball bearings to avoid structural damage and subsequent malfunctioning or unexpected failures. Unconventional mounting procedures may produce excessive contact pressures between the elements of the bearing, therefore the whole process must be well-understood and modelled to prevent unwanted effects. Specifically for angular ball bearings, fitting axial forces should always be applied over the raceway subjected to the shrink-fit to avoid contact forces arising on the ball. In the present study, such an axial force is applied unconventionally, such that the axial force is transferred to the shrink-fit raceway through the balls. In this scenario, the evaluation of the contact areas and the pressure distributions is accomplished by exploiting both analytical and FEM approaches, supported by bespoke experimental tests to determine the relevant frictional coefficients and mounting forces. The study demonstrated how analytical methods can successfully replace more demanding FEM-based tools for the evaluation of the bearing mounting force and contact pressure and extent. FEM modelling can, however, be more accurate when dealing with more generic boundary conditions and more intricate geometrical features involved.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.