A contact analysis for unconventional mounting processes of angular ball bearings

IF 2.7 3区 材料科学 Q2 ENGINEERING, MECHANICAL
Simone Dreon, Lorenzo Scalera, Enrico Salvati
{"title":"A contact analysis for unconventional mounting processes of angular ball bearings","authors":"Simone Dreon,&nbsp;Lorenzo Scalera,&nbsp;Enrico Salvati","doi":"10.1007/s10999-023-09683-4","DOIUrl":null,"url":null,"abstract":"<div><p>Rigorous protocols must be followed when mounting ball bearings to avoid structural damage and subsequent malfunctioning or unexpected failures. Unconventional mounting procedures may produce excessive contact pressures between the elements of the bearing, therefore the whole process must be well-understood and modelled to prevent unwanted effects. Specifically for angular ball bearings, fitting axial forces should always be applied over the raceway subjected to the shrink-fit to avoid contact forces arising on the ball. In the present study, such an axial force is applied unconventionally, such that the axial force is transferred to the shrink-fit raceway through the balls. In this scenario, the evaluation of the contact areas and the pressure distributions is accomplished by exploiting both analytical and FEM approaches, supported by bespoke experimental tests to determine the relevant frictional coefficients and mounting forces. The study demonstrated how analytical methods can successfully replace more demanding FEM-based tools for the evaluation of the bearing mounting force and contact pressure and extent. FEM modelling can, however, be more accurate when dealing with more generic boundary conditions and more intricate geometrical features involved.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"20 3","pages":"429 - 443"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10999-023-09683-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-023-09683-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rigorous protocols must be followed when mounting ball bearings to avoid structural damage and subsequent malfunctioning or unexpected failures. Unconventional mounting procedures may produce excessive contact pressures between the elements of the bearing, therefore the whole process must be well-understood and modelled to prevent unwanted effects. Specifically for angular ball bearings, fitting axial forces should always be applied over the raceway subjected to the shrink-fit to avoid contact forces arising on the ball. In the present study, such an axial force is applied unconventionally, such that the axial force is transferred to the shrink-fit raceway through the balls. In this scenario, the evaluation of the contact areas and the pressure distributions is accomplished by exploiting both analytical and FEM approaches, supported by bespoke experimental tests to determine the relevant frictional coefficients and mounting forces. The study demonstrated how analytical methods can successfully replace more demanding FEM-based tools for the evaluation of the bearing mounting force and contact pressure and extent. FEM modelling can, however, be more accurate when dealing with more generic boundary conditions and more intricate geometrical features involved.

Abstract Image

角球轴承非常规安装工艺的接触分析
在安装球轴承时必须遵循严格的规程,以避免结构损坏和随后的故障或意外失效。非常规的安装程序可能会在轴承元件之间产生过大的接触压力,因此必须充分了解整个过程并建立模型,以防止不必要的影响。特别是角球轴承,应始终在受到收缩配合的滚道上施加配合轴向力,以避免球受到接触力。在本研究中,这种轴向力的施加方式是非常规的,即轴向力通过滚珠传递到收缩配合的滚道上。在这种情况下,通过利用分析和有限元方法来评估接触面积和压力分布,并辅以定制的实验测试来确定相关的摩擦系数和安装力。研究表明,在评估轴承安装力和接触压力及范围时,分析方法可以成功取代要求更高的基于有限元的工具。不过,在处理更通用的边界条件和更复杂的几何特征时,有限元建模可以更加精确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Mechanics and Materials in Design
International Journal of Mechanics and Materials in Design ENGINEERING, MECHANICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
6.00
自引率
5.40%
发文量
41
审稿时长
>12 weeks
期刊介绍: It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design. Analytical synopsis of contents: The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design: Intelligent Design: Nano-engineering and Nano-science in Design; Smart Materials and Adaptive Structures in Design; Mechanism(s) Design; Design against Failure; Design for Manufacturing; Design of Ultralight Structures; Design for a Clean Environment; Impact and Crashworthiness; Microelectronic Packaging Systems. Advanced Materials in Design: Newly Engineered Materials; Smart Materials and Adaptive Structures; Micromechanical Modelling of Composites; Damage Characterisation of Advanced/Traditional Materials; Alternative Use of Traditional Materials in Design; Functionally Graded Materials; Failure Analysis: Fatigue and Fracture; Multiscale Modelling Concepts and Methodology; Interfaces, interfacial properties and characterisation. Design Analysis and Optimisation: Shape and Topology Optimisation; Structural Optimisation; Optimisation Algorithms in Design; Nonlinear Mechanics in Design; Novel Numerical Tools in Design; Geometric Modelling and CAD Tools in Design; FEM, BEM and Hybrid Methods; Integrated Computer Aided Design; Computational Failure Analysis; Coupled Thermo-Electro-Mechanical Designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信