{"title":"The finite and solvable genus of finitely generated free and surface groups","authors":"Andrei Jaikin-Zapirain","doi":"10.1007/s40687-023-00408-9","DOIUrl":null,"url":null,"abstract":"Abstract Let $${\\mathcal {C}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> be the pseudovariety $${\\mathcal {F}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>F</mml:mi> </mml:math> of all finite groups or the pseudovariety $${\\mathcal {S}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>S</mml:mi> </mml:math> of all finite solvable groups and let $$\\Gamma $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>Γ</mml:mi> </mml:math> be either a finitely generated free group or a surface group. The $${\\mathcal {C}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> -genus of $$\\Gamma $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>Γ</mml:mi> </mml:math> , denoted by $${\\mathcal {G}}_{{\\mathcal {C}}}(\\Gamma )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>C</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>Γ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , consists of the isomorphism classes of finitely generated residually- $$\\mathcal C$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> groups G having the same quotients in $${\\mathcal {C}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> as $$\\Gamma $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>Γ</mml:mi> </mml:math> . We show that the groups from $${\\mathcal {G}}_{{\\mathcal {C}}}(\\Gamma )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>G</mml:mi> <mml:mi>C</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>Γ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> are residually- p for all primes p . This answers a question of Gilbert Baumslag and shows that the groups in the genus are residually finite rationally solvable groups. This leads to a positive solution of particular case of a question of Alexander Grothendieck: if F is a free group, G is a finitely generated residually- $${\\mathcal {C}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> group and $$u:F\\rightarrow G$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo>:</mml:mo> <mml:mi>F</mml:mi> <mml:mo>→</mml:mo> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> is a homomorphism such that the induced map of pro- $${\\mathcal {C}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> completions $$u_{\\widehat{{\\mathcal {C}}}} : F_{\\widehat{{\\mathcal {C}}}}\\rightarrow G_{\\widehat{{\\mathcal {C}}}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>u</mml:mi> <mml:mover> <mml:mi>C</mml:mi> <mml:mo>^</mml:mo> </mml:mover> </mml:msub> <mml:mo>:</mml:mo> <mml:msub> <mml:mi>F</mml:mi> <mml:mover> <mml:mi>C</mml:mi> <mml:mo>^</mml:mo> </mml:mover> </mml:msub> <mml:mo>→</mml:mo> <mml:msub> <mml:mi>G</mml:mi> <mml:mover> <mml:mi>C</mml:mi> <mml:mo>^</mml:mo> </mml:mover> </mml:msub> </mml:mrow> </mml:math> is an isomorphism, then u is an isomorphism.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40687-023-00408-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Let $${\mathcal {C}}$$ C be the pseudovariety $${\mathcal {F}}$$ F of all finite groups or the pseudovariety $${\mathcal {S}}$$ S of all finite solvable groups and let $$\Gamma $$ Γ be either a finitely generated free group or a surface group. The $${\mathcal {C}}$$ C -genus of $$\Gamma $$ Γ , denoted by $${\mathcal {G}}_{{\mathcal {C}}}(\Gamma )$$ GC(Γ) , consists of the isomorphism classes of finitely generated residually- $$\mathcal C$$ C groups G having the same quotients in $${\mathcal {C}}$$ C as $$\Gamma $$ Γ . We show that the groups from $${\mathcal {G}}_{{\mathcal {C}}}(\Gamma )$$ GC(Γ) are residually- p for all primes p . This answers a question of Gilbert Baumslag and shows that the groups in the genus are residually finite rationally solvable groups. This leads to a positive solution of particular case of a question of Alexander Grothendieck: if F is a free group, G is a finitely generated residually- $${\mathcal {C}}$$ C group and $$u:F\rightarrow G$$ u:F→G is a homomorphism such that the induced map of pro- $${\mathcal {C}}$$ C completions $$u_{\widehat{{\mathcal {C}}}} : F_{\widehat{{\mathcal {C}}}}\rightarrow G_{\widehat{{\mathcal {C}}}}$$ uC^:FC^→GC^ is an isomorphism, then u is an isomorphism.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.