{"title":"DxPU: Large Scale Disaggregated GPU Pools in the Datacenter","authors":"Bowen He, Xiao Zheng, Yuan Chen, Weinan Li, Yajin Zhou, Xin Long, Pengcheng Zhang, Xiaowei Lu, Linquan Jiang, Qiang Liu, Dennis Cai, Xiantao Zhang","doi":"10.1145/3617995","DOIUrl":null,"url":null,"abstract":"The rapid adoption of AI and convenience offered by cloud services have resulted in the growing demands for GPUs in the cloud. Generally, GPUs are physically attached to host servers as PCIe devices. However, the fixed assembly combination of host servers and GPUs is extremely inefficient in resource utilization, upgrade, and maintenance. Due to these issues, the GPU disaggregation technique has been proposed to decouple GPUs from host servers. It aggregates GPUs into a pool, and allocates GPU node(s) according to user demands. However, existing GPU disaggregation systems have flaws in software-hardware compatibility, disaggregation scope, and capacity. In this paper, we present a new implementation of datacenter-scale GPU disaggregation, named DxPU. DxPU efficiently solves the above problems and can flexibly allocate as many GPU node(s) as users demand. In order to understand the performance overhead incurred by DxPU, we build up a performance model for AI specific workloads. With the guidance of modeling results, we develop a prototype system, which has been deployed into the datacenter of a leading cloud provider for a test run. We also conduct detailed experiments to evaluate the performance overhead caused by our system. The results show that the overhead of DxPU is less than 10%, compared with native GPU servers, in most of user scenarios.","PeriodicalId":50920,"journal":{"name":"ACM Transactions on Architecture and Code Optimization","volume":"36 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Architecture and Code Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3617995","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid adoption of AI and convenience offered by cloud services have resulted in the growing demands for GPUs in the cloud. Generally, GPUs are physically attached to host servers as PCIe devices. However, the fixed assembly combination of host servers and GPUs is extremely inefficient in resource utilization, upgrade, and maintenance. Due to these issues, the GPU disaggregation technique has been proposed to decouple GPUs from host servers. It aggregates GPUs into a pool, and allocates GPU node(s) according to user demands. However, existing GPU disaggregation systems have flaws in software-hardware compatibility, disaggregation scope, and capacity. In this paper, we present a new implementation of datacenter-scale GPU disaggregation, named DxPU. DxPU efficiently solves the above problems and can flexibly allocate as many GPU node(s) as users demand. In order to understand the performance overhead incurred by DxPU, we build up a performance model for AI specific workloads. With the guidance of modeling results, we develop a prototype system, which has been deployed into the datacenter of a leading cloud provider for a test run. We also conduct detailed experiments to evaluate the performance overhead caused by our system. The results show that the overhead of DxPU is less than 10%, compared with native GPU servers, in most of user scenarios.
期刊介绍:
ACM Transactions on Architecture and Code Optimization (TACO) focuses on hardware, software, and system research spanning the fields of computer architecture and code optimization. Articles that appear in TACO will either present new techniques and concepts or report on experiences and experiments with actual systems. Insights useful to architects, hardware or software developers, designers, builders, and users will be emphasized.