Bacterial communities structure in constructed wetlands for municipal and industrial wastewater treatment in Tanzania

IF 1.6 Q3 WATER RESOURCES
Gerubin Liberath Msaki, Sadikiel E. Kaale, Karoli Nicholas Njau, Thomas J. Lyimo
{"title":"Bacterial communities structure in constructed wetlands for municipal and industrial wastewater treatment in Tanzania","authors":"Gerubin Liberath Msaki, Sadikiel E. Kaale, Karoli Nicholas Njau, Thomas J. Lyimo","doi":"10.2166/wpt.2023.155","DOIUrl":null,"url":null,"abstract":"Abstract Bacteria are the largest and most essential microorganisms in wastewater treatment systems. Despite the vital role bacteria play in enhancing wastewater treatment, its community structure and diversity remain poorly known. This study elucidated bacterial diversity and community structure in constructed wetlands (CWs) for municipal and industrial wastewater treatment using a culture-independent approach. Analysis of physicochemical parameters and Illumina high-throughput sequencing of V3 and V4 hypervariable regions of 16S rRNA gene bacterial community was performed. The results showed that the Proteobacteria were dominant (48.66%) phyla across all CWs. The Gammaproteobacteria class (27.67%), family Comamonadaceae (35.79) and Genus Flavobacterium (4.35%) were dominant across studied CWs. Bacterial abundance increased from the inlet to the outlet, with CWs having a higher abundance around the outlet, showing a good performance. The Shannon–Wiener index showed the highest species diversity (H = 1.45) in Banana Investment Limited CWs treating industrial wastewater. This study found significant bacterial diversity across studied CWs, with higher abundance and diversity at the outlet indicating better performance than those with low abundance and diversity at the outlet. We recommend a longitudinal investigation at each CWs section to confirm and establish the role of bacterial diversity on the performance pattern of CWs.","PeriodicalId":23794,"journal":{"name":"Water Practice and Technology","volume":"28 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Practice and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wpt.2023.155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Bacteria are the largest and most essential microorganisms in wastewater treatment systems. Despite the vital role bacteria play in enhancing wastewater treatment, its community structure and diversity remain poorly known. This study elucidated bacterial diversity and community structure in constructed wetlands (CWs) for municipal and industrial wastewater treatment using a culture-independent approach. Analysis of physicochemical parameters and Illumina high-throughput sequencing of V3 and V4 hypervariable regions of 16S rRNA gene bacterial community was performed. The results showed that the Proteobacteria were dominant (48.66%) phyla across all CWs. The Gammaproteobacteria class (27.67%), family Comamonadaceae (35.79) and Genus Flavobacterium (4.35%) were dominant across studied CWs. Bacterial abundance increased from the inlet to the outlet, with CWs having a higher abundance around the outlet, showing a good performance. The Shannon–Wiener index showed the highest species diversity (H = 1.45) in Banana Investment Limited CWs treating industrial wastewater. This study found significant bacterial diversity across studied CWs, with higher abundance and diversity at the outlet indicating better performance than those with low abundance and diversity at the outlet. We recommend a longitudinal investigation at each CWs section to confirm and establish the role of bacterial diversity on the performance pattern of CWs.
坦桑尼亚用于市政和工业废水处理的人工湿地细菌群落结构
细菌是污水处理系统中最大、最重要的微生物。尽管细菌在污水处理中起着至关重要的作用,但其群落结构和多样性仍然鲜为人知。本研究利用不依赖培养的方法研究了人工湿地(CWs)处理城市和工业废水的细菌多样性和群落结构。对16S rRNA基因细菌群落的V3和V4高变区进行理化参数分析和Illumina高通量测序。结果表明,变形菌门在所有CWs中均占优势门(48.66%)。Gammaproteobacteria纲(27.67%)、Comamonadaceae科(35.79%)和Flavobacterium属(4.35%)在研究的CWs中占主导地位。细菌丰度从入口向出口逐渐增加,出口附近的CWs丰度较高,表现出良好的性能。Shannon-Wiener指数显示,香蕉投资有限公司处理工业废水的CWs物种多样性最高(H = 1.45)。本研究发现,在所研究的CWs中存在显著的细菌多样性,出口丰度和多样性较高的CWs比出口丰度和多样性较低的CWs性能更好。我们建议对每个化粪池进行纵向调查,以确认和确定细菌多样性对化粪池性能模式的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
6.20%
发文量
136
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信