Alberto Cabada, Lucía López-Somoza, Mouhcine Yousfi
{"title":"Existence of solutions of nonlinear systems subject to arbitrary linear non-local boundary conditions","authors":"Alberto Cabada, Lucía López-Somoza, Mouhcine Yousfi","doi":"10.1007/s11784-023-01083-7","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we obtain an explicit expression for the Green’s function of a certain type of systems of differential equations subject to non-local linear boundary conditions. In such boundary conditions, the dependence on certain parameters is considered. The idea of the study is to transform the given system into another first-order differential linear system together with the two-point boundary value conditions. To obtain the explicit expression of the Green’s function of the considered linear system with non-local boundary conditions, it is assumed that the Green’s function of the homogeneous problem, that is, when all the parameters involved in the non-local boundary conditions take the value zero, exists and is unique. In such a case, the homogeneous problem has a unique solution that is characterized by the corresponding Green’s function g . The expression of the Green’s function of the given system is obtained as the sum of the function g and a part that depends on the parameters involved in the boundary conditions and the expression of function g . The novelty of our work is that in the system to be studied, the unknown functions do not appear separated neither in the equations nor in the boundary conditions. The existence of solutions of nonlinear systems with linear non-local boundary conditions is also studied. We illustrate the obtained results in this paper with examples.","PeriodicalId":54835,"journal":{"name":"Journal of Fixed Point Theory and Applications","volume":"18 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fixed Point Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11784-023-01083-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper, we obtain an explicit expression for the Green’s function of a certain type of systems of differential equations subject to non-local linear boundary conditions. In such boundary conditions, the dependence on certain parameters is considered. The idea of the study is to transform the given system into another first-order differential linear system together with the two-point boundary value conditions. To obtain the explicit expression of the Green’s function of the considered linear system with non-local boundary conditions, it is assumed that the Green’s function of the homogeneous problem, that is, when all the parameters involved in the non-local boundary conditions take the value zero, exists and is unique. In such a case, the homogeneous problem has a unique solution that is characterized by the corresponding Green’s function g . The expression of the Green’s function of the given system is obtained as the sum of the function g and a part that depends on the parameters involved in the boundary conditions and the expression of function g . The novelty of our work is that in the system to be studied, the unknown functions do not appear separated neither in the equations nor in the boundary conditions. The existence of solutions of nonlinear systems with linear non-local boundary conditions is also studied. We illustrate the obtained results in this paper with examples.
期刊介绍:
The Journal of Fixed Point Theory and Applications (JFPTA) provides a publication forum for an important research in all disciplines in which the use of tools of fixed point theory plays an essential role. Research topics include but are not limited to:
(i) New developments in fixed point theory as well as in related topological methods,
in particular:
Degree and fixed point index for various types of maps,
Algebraic topology methods in the context of the Leray-Schauder theory,
Lefschetz and Nielsen theories,
Borsuk-Ulam type results,
Vietoris fractions and fixed points for set-valued maps.
(ii) Ramifications to global analysis, dynamical systems and symplectic topology,
in particular:
Degree and Conley Index in the study of non-linear phenomena,
Lusternik-Schnirelmann and Morse theoretic methods,
Floer Homology and Hamiltonian Systems,
Elliptic complexes and the Atiyah-Bott fixed point theorem,
Symplectic fixed point theorems and results related to the Arnold Conjecture.
(iii) Significant applications in nonlinear analysis, mathematical economics and computation theory,
in particular:
Bifurcation theory and non-linear PDE-s,
Convex analysis and variational inequalities,
KKM-maps, theory of games and economics,
Fixed point algorithms for computing fixed points.
(iv) Contributions to important problems in geometry, fluid dynamics and mathematical physics,
in particular:
Global Riemannian geometry,
Nonlinear problems in fluid mechanics.