Characteristic analysis of a novel magnetorheological fabric composite cored flexible sandwich beam with tunable stiffness

IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Pingyang Li, Xiaomin Dong, Zhenyang Fei, Qinglin Liu
{"title":"Characteristic analysis of a novel magnetorheological fabric composite cored flexible sandwich beam with tunable stiffness","authors":"Pingyang Li, Xiaomin Dong, Zhenyang Fei, Qinglin Liu","doi":"10.1177/1045389x231197099","DOIUrl":null,"url":null,"abstract":"This paper focuses on the performance improvement and evaluation of a novel flexible sandwich beam incorporated magnetorheological fluid porous fabric (MRF-PF). As a novel MR material, MRF-PF has been introduced, prepared, and measured to analyze the pre-yield property between complex shear modulus and magnetic fields. MRF-PF is used into the flexible sandwich beam as core layer. Pre-yield property with tunable stiffness is used to adjust the dynamic response. Then, a theoretical model is derived which can precisely describe the performance. Based on experimental results, sandwich beam incorporated MRF-PF has a good performance of controllability. When the magnetic field is applied into the free end, the natural frequency decreases with increasing the currents and filling ratio. In contrast, the frequency and amplitude increase when the clamped end is exposed to the magnetic fields. Comparing with other investigations, this proposed sandwich beam incorporated MRF-PF has a larger frequency range. The first and second natural frequency show the increases of 54.8% and 77.2%, respectively. The reduction of amplitude is closely related to the thickness of face plate. Therefore, the performance of the compound sandwich beam can be significantly improved by MRF-PF.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"66 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1045389x231197099","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the performance improvement and evaluation of a novel flexible sandwich beam incorporated magnetorheological fluid porous fabric (MRF-PF). As a novel MR material, MRF-PF has been introduced, prepared, and measured to analyze the pre-yield property between complex shear modulus and magnetic fields. MRF-PF is used into the flexible sandwich beam as core layer. Pre-yield property with tunable stiffness is used to adjust the dynamic response. Then, a theoretical model is derived which can precisely describe the performance. Based on experimental results, sandwich beam incorporated MRF-PF has a good performance of controllability. When the magnetic field is applied into the free end, the natural frequency decreases with increasing the currents and filling ratio. In contrast, the frequency and amplitude increase when the clamped end is exposed to the magnetic fields. Comparing with other investigations, this proposed sandwich beam incorporated MRF-PF has a larger frequency range. The first and second natural frequency show the increases of 54.8% and 77.2%, respectively. The reduction of amplitude is closely related to the thickness of face plate. Therefore, the performance of the compound sandwich beam can be significantly improved by MRF-PF.
一种新型可调刚度磁流变复合材料芯芯柔性夹层梁的特性分析
研究了一种新型含磁流变流体多孔结构的柔性夹层梁的性能改进与评价。作为一种新型磁流变材料,本文介绍、制备并测量了复合剪切模量与磁场之间的预屈服特性。在柔性夹层梁中采用磁流变pf作为核心层。利用可调刚度的预屈服特性来调节动态响应。在此基础上,推导了一个能准确描述其性能的理论模型。实验结果表明,含磁流变pf的夹层梁具有良好的可控性。在自由端施加磁场时,随电流和填充比的增大,固有频率减小。相反,当夹紧端暴露在磁场中时,频率和振幅增加。与其他研究相比,该夹层梁具有更大的频率范围。第一和第二固有频率分别增加了54.8%和77.2%。振幅的减小与面板的厚度密切相关。因此,复合夹层梁的性能可以显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Intelligent Material Systems and Structures
Journal of Intelligent Material Systems and Structures 工程技术-材料科学:综合
CiteScore
5.40
自引率
11.10%
发文量
126
审稿时长
4.7 months
期刊介绍: The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信