{"title":"Engaging Young Students in Effective Robotics Education: An Embodied Learning-Based Computer Programming Approach","authors":"Xinli Zhang, Yuchen Chen, Danqing Li, Lailin Hu, Gwo-Jen Hwang, Yun-Fang Tu","doi":"10.1177/07356331231213548","DOIUrl":null,"url":null,"abstract":"Robotics education has received widespread attention in K-12 education. Studies have pointed out that in robotics courses, learners face challenges in learning abstract content, such as constructing a robot with a good structure and writing programs to drive a robot to complete specific learning tasks. The present study proposed the embodied learning-based computer programming approach and applied it to the LEGO Mindstorms EV3 robotics course. To evaluate its effectiveness, a quasi-experiment was conducted in one public primary school to explore its effects on students’ learning achievement, learning motivation, learning attitudes, learning engagement, and cognitive load. The experimental group (40 students) adopted the embodied learning-based computer programming approach, while the control group (40 students) adopted the conventional computer programming approach. The results showed that the experimental group had significantly better learning achievement in robotics than the control group, and that there was no significant difference in the cognitive load of the two groups. In terms of learning motivation, although both groups showed improvement, the experimental group had higher intrinsic learning motivation. In addition, the experimental group outperformed the control group with regard to learning attitudes and learning engagement (including cognitive, behavioral, and emotional engagement). Accordingly, this study could contribute to future research for developing more effective robotics teaching approaches and computer programming activity design.","PeriodicalId":47865,"journal":{"name":"Journal of Educational Computing Research","volume":"11 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational Computing Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/07356331231213548","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Robotics education has received widespread attention in K-12 education. Studies have pointed out that in robotics courses, learners face challenges in learning abstract content, such as constructing a robot with a good structure and writing programs to drive a robot to complete specific learning tasks. The present study proposed the embodied learning-based computer programming approach and applied it to the LEGO Mindstorms EV3 robotics course. To evaluate its effectiveness, a quasi-experiment was conducted in one public primary school to explore its effects on students’ learning achievement, learning motivation, learning attitudes, learning engagement, and cognitive load. The experimental group (40 students) adopted the embodied learning-based computer programming approach, while the control group (40 students) adopted the conventional computer programming approach. The results showed that the experimental group had significantly better learning achievement in robotics than the control group, and that there was no significant difference in the cognitive load of the two groups. In terms of learning motivation, although both groups showed improvement, the experimental group had higher intrinsic learning motivation. In addition, the experimental group outperformed the control group with regard to learning attitudes and learning engagement (including cognitive, behavioral, and emotional engagement). Accordingly, this study could contribute to future research for developing more effective robotics teaching approaches and computer programming activity design.
期刊介绍:
The goal of this Journal is to provide an international scholarly publication forum for peer-reviewed interdisciplinary research into the applications, effects, and implications of computer-based education. The Journal features articles useful for practitioners and theorists alike. The terms "education" and "computing" are viewed broadly. “Education” refers to the use of computer-based technologies at all levels of the formal education system, business and industry, home-schooling, lifelong learning, and unintentional learning environments. “Computing” refers to all forms of computer applications and innovations - both hardware and software. For example, this could range from mobile and ubiquitous computing to immersive 3D simulations and games to computing-enhanced virtual learning environments.