{"title":"Simulation of truncated and unimodal gamma distributions","authors":"Yuta Kurose","doi":"10.1080/00949655.2023.2277339","DOIUrl":null,"url":null,"abstract":"AbstractAn efficient random variable generator for a truncated gamma distribution with shape parameter greater than 1 is designed using an acceptance-rejection algorithm. Based on an approximation to a transformed gamma density function by the standard normal density, numerical information for the standard normal density is prepared in advance, and the calculation is performed with reference to that information. An improvement via a squeezing method is proposed to reduce the computational burden and time. The algorithm's acceptance rate for generating truncated gamma variables is very high and almost 1 when the truncated distribution is unimodal. Numerical experiments for one- and two-sided truncated domain cases are conducted to measure the execution time, including the parameter setup time. Compared with existing truncated gamma variate generators, the proposed method performs better when the distribution is unimodal and the shape parameter is equal to or greater than 3.3.Keywords: Acceptance-rejection algorithmshape parametersqueezingtruncated gamma distributionMathematics Subject Classifications: 65C0565C1062-08 Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research was supported by JSPS KAKENHI Grant Numbers JP19H00588 and JP20K19751.","PeriodicalId":50040,"journal":{"name":"Journal of Statistical Computation and Simulation","volume":"27 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Computation and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00949655.2023.2277339","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractAn efficient random variable generator for a truncated gamma distribution with shape parameter greater than 1 is designed using an acceptance-rejection algorithm. Based on an approximation to a transformed gamma density function by the standard normal density, numerical information for the standard normal density is prepared in advance, and the calculation is performed with reference to that information. An improvement via a squeezing method is proposed to reduce the computational burden and time. The algorithm's acceptance rate for generating truncated gamma variables is very high and almost 1 when the truncated distribution is unimodal. Numerical experiments for one- and two-sided truncated domain cases are conducted to measure the execution time, including the parameter setup time. Compared with existing truncated gamma variate generators, the proposed method performs better when the distribution is unimodal and the shape parameter is equal to or greater than 3.3.Keywords: Acceptance-rejection algorithmshape parametersqueezingtruncated gamma distributionMathematics Subject Classifications: 65C0565C1062-08 Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research was supported by JSPS KAKENHI Grant Numbers JP19H00588 and JP20K19751.
期刊介绍:
Journal of Statistical Computation and Simulation ( JSCS ) publishes significant and original work in areas of statistics which are related to or dependent upon the computer.
Fields covered include computer algorithms related to probability or statistics, studies in statistical inference by means of simulation techniques, and implementation of interactive statistical systems.
JSCS does not consider applications of statistics to other fields, except as illustrations of the use of the original statistics presented.
Accepted papers should ideally appeal to a wide audience of statisticians and provoke real applications of theoretical constructions.