{"title":"Disclosing Product Availability in Online Retail","authors":"Eduard Calvo, Ruomeng Cui, Laura Wagner","doi":"10.1287/msom.2020.0882","DOIUrl":null,"url":null,"abstract":"Problem definition: Online retailers disclose product availability to influence customer decisions as a form of pressure selling designed to compel customers to rush into a purchase. Can the revelation of this information drive sales and profitability? We study the effect of disclosing product availability on market outcomes—product sales and returns—and identify the contexts where this effect is most powerful. Academic/practical relevance: Increasing sell-out is key for online retailers to remain profitable in the presence of thin margins and complex operations. We provide insights into how their information-disclosure policy—something they can tailor at virtually no cost—can contribute to this important objective. Methodology: We collaborate with an online retailer to procure a year of transaction data on 190,696 products that span 1,290 brands and 472,980 customers. To causally identify our results, we use a generalized difference-in-differences design with matching that exploits one policy of the firm: it discloses product availability only for the last five units. Results: The disclosure of low product availability increases hourly sales—they grow by 13.6%—but these products are more likely to be returned—product return rates increase by 17.0%. Because returns are costly, we also study net sales—product hourly sales minus hourly returns—which increase by 12.5% after the retailer reveals low availability. Managerial implications: The positive effects on sales and profitability amplify over wide assortments and when low-availability signals are abundantly visible and disclosed for deeply discounted products whose sales season is about to end. In addition, we propose a data-driven policy that exploits these results by using machine learning to prescribe the timing of disclosure of scarcity signals in order to boost sales without spiking returns. History: This paper has been accepted as part of the 2019 Manufacturing & Service Operations Management Practice-Based Research Competition.","PeriodicalId":49901,"journal":{"name":"M&som-Manufacturing & Service Operations Management","volume":"22 1","pages":"0"},"PeriodicalIF":4.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"M&som-Manufacturing & Service Operations Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/msom.2020.0882","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 17
Abstract
Problem definition: Online retailers disclose product availability to influence customer decisions as a form of pressure selling designed to compel customers to rush into a purchase. Can the revelation of this information drive sales and profitability? We study the effect of disclosing product availability on market outcomes—product sales and returns—and identify the contexts where this effect is most powerful. Academic/practical relevance: Increasing sell-out is key for online retailers to remain profitable in the presence of thin margins and complex operations. We provide insights into how their information-disclosure policy—something they can tailor at virtually no cost—can contribute to this important objective. Methodology: We collaborate with an online retailer to procure a year of transaction data on 190,696 products that span 1,290 brands and 472,980 customers. To causally identify our results, we use a generalized difference-in-differences design with matching that exploits one policy of the firm: it discloses product availability only for the last five units. Results: The disclosure of low product availability increases hourly sales—they grow by 13.6%—but these products are more likely to be returned—product return rates increase by 17.0%. Because returns are costly, we also study net sales—product hourly sales minus hourly returns—which increase by 12.5% after the retailer reveals low availability. Managerial implications: The positive effects on sales and profitability amplify over wide assortments and when low-availability signals are abundantly visible and disclosed for deeply discounted products whose sales season is about to end. In addition, we propose a data-driven policy that exploits these results by using machine learning to prescribe the timing of disclosure of scarcity signals in order to boost sales without spiking returns. History: This paper has been accepted as part of the 2019 Manufacturing & Service Operations Management Practice-Based Research Competition.
期刊介绍:
M&SOM is the INFORMS journal for operations management. The purpose of the journal is to publish high-impact manuscripts that report relevant research on important problems in operations management (OM). The field of OM is the study of the innovative or traditional processes for the design, procurement, production, delivery, and recovery of goods and services. OM research entails the control, planning, design, and improvement of these processes. This research can be prescriptive, descriptive, or predictive; however, the intent of the research is ultimately to develop some form of enduring knowledge that can lead to more efficient or effective processes for the creation and delivery of goods and services.
M&SOM encourages a variety of methodological approaches to OM research; papers may be theoretical or empirical, analytical or computational, and may be based on a range of established research disciplines. M&SOM encourages contributions in OM across the full spectrum of decision making: strategic, tactical, and operational. Furthermore, the journal supports research that examines pertinent issues at the interfaces between OM and other functional areas.