Understanding the determinants of bond excess returns using explainable AI

Lars Beckmann, Jörn Debener, Johannes Kriebel
{"title":"Understanding the determinants of bond excess returns using explainable AI","authors":"Lars Beckmann, Jörn Debener, Johannes Kriebel","doi":"10.1007/s11573-023-01149-5","DOIUrl":null,"url":null,"abstract":"Abstract Recent empirical evidence indicates that bond excess returns can be predicted using machine learning models. However, although the predictive power of machine learning models is intriguing, they typically lack transparency. This paper introduces the state-of-the-art explainable artificial intelligence technique SHapley Additive exPlanations (SHAP) to open the black box of these models. Our analysis identifies the key determinants that drive the predictions of bond excess returns produced by machine learning models and recognizes how these determinants relate to bond excess returns. This approach facilitates an economic interpretation of the predictions of bond excess returns made by machine learning models and contributes to a thorough understanding of the determinants of bond excess returns, which is critical for the decisions of market participants and the evaluation of economic theories.","PeriodicalId":94069,"journal":{"name":"Journal of business economics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of business economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11573-023-01149-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Recent empirical evidence indicates that bond excess returns can be predicted using machine learning models. However, although the predictive power of machine learning models is intriguing, they typically lack transparency. This paper introduces the state-of-the-art explainable artificial intelligence technique SHapley Additive exPlanations (SHAP) to open the black box of these models. Our analysis identifies the key determinants that drive the predictions of bond excess returns produced by machine learning models and recognizes how these determinants relate to bond excess returns. This approach facilitates an economic interpretation of the predictions of bond excess returns made by machine learning models and contributes to a thorough understanding of the determinants of bond excess returns, which is critical for the decisions of market participants and the evaluation of economic theories.
利用可解释人工智能理解债券超额回报的决定因素
最近的经验证据表明,债券超额收益可以使用机器学习模型进行预测。然而,尽管机器学习模型的预测能力很有趣,但它们通常缺乏透明度。本文引入最先进的可解释人工智能技术SHapley加性解释(SHAP)来打开这些模型的黑匣子。我们的分析确定了驱动机器学习模型产生的债券超额回报预测的关键决定因素,并认识到这些决定因素与债券超额回报的关系。这种方法有助于对机器学习模型对债券超额回报的预测进行经济解释,并有助于彻底理解债券超额回报的决定因素,这对市场参与者的决策和经济理论的评估至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信