On Discrete Gradient Vector Fields and Laplacians of Simplicial Complexes

Pub Date : 2023-05-30 DOI:10.1007/s00026-023-00655-1
Ivan Contreras, Andrew Tawfeek
{"title":"On Discrete Gradient Vector Fields and Laplacians of Simplicial Complexes","authors":"Ivan Contreras,&nbsp;Andrew Tawfeek","doi":"10.1007/s00026-023-00655-1","DOIUrl":null,"url":null,"abstract":"<div><p>Discrete Morse theory, a cell complex-analog to smooth Morse theory allowing homotopic tools in the discrete realm, has been developed over the past few decades since its original formulation by Robin Forman in 1998. In particular, discrete gradient vector fields on simplicial complexes capture important topological features of the structure. We prove that the characteristic polynomials of the Laplacian matrices of a simplicial complex are generating functions for discrete gradient vector fields if the complex is a triangulation of an orientable manifold. Furthermore, we provide a full characterization of the correspondence between rooted forests in higher dimensions and discrete gradient vector fields.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-023-00655-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Discrete Morse theory, a cell complex-analog to smooth Morse theory allowing homotopic tools in the discrete realm, has been developed over the past few decades since its original formulation by Robin Forman in 1998. In particular, discrete gradient vector fields on simplicial complexes capture important topological features of the structure. We prove that the characteristic polynomials of the Laplacian matrices of a simplicial complex are generating functions for discrete gradient vector fields if the complex is a triangulation of an orientable manifold. Furthermore, we provide a full characterization of the correspondence between rooted forests in higher dimensions and discrete gradient vector fields.

Abstract Image

分享
查看原文
论离散梯度矢量场和简单复数的拉普拉斯
离散莫尔斯理论(Discrete Morse theory)是光滑莫尔斯理论(smooth Morse theory)的单元复数类似理论,允许在离散领域使用同构工具,自罗宾-福曼(Robin Forman)于 1998 年首次提出该理论以来,已经发展了几十年。特别是,单纯复数上的离散梯度向量场捕捉到了结构的重要拓扑特征。我们证明,如果复数是可定向流形的三角剖分,那么简并复数的拉普拉斯矩阵的特征多项式就是离散梯度向量场的生成函数。此外,我们还提供了高维根森林与离散梯度向量场之间对应关系的完整表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信