Testing Conditional Independence in Casual Inference for Time Series Data

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Zongwu Cai, Ying Fang, Ming Lin, Shengfang Tang
{"title":"Testing Conditional Independence in Casual Inference for Time Series Data<sup>†</sup>","authors":"Zongwu Cai, Ying Fang, Ming Lin, Shengfang Tang","doi":"10.1111/stan.12323","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new procedure to test conditional independence assumption in studying casual inference for time series data. The conditional independence assumption is transformed to a nonparametric conditional moment test with the help of auxiliary variables which are allowed to affect policy choice but the dependence can be fully captured by potential outcomes and observable controls. When the policy choice is binary, a nonparametric statistic test is developed further for testing the conditional independence assumption conditional on policy propensity score. Under some regular conditions, we show that the proposed test statistics are asymptotically normal under the null hypotheses for time series data. In addition, the performances of the proposed methods are illustrated through Monte Carlo simulations and a real example considered in Angrist and Kuersteiner (2011).","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"98 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/stan.12323","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a new procedure to test conditional independence assumption in studying casual inference for time series data. The conditional independence assumption is transformed to a nonparametric conditional moment test with the help of auxiliary variables which are allowed to affect policy choice but the dependence can be fully captured by potential outcomes and observable controls. When the policy choice is binary, a nonparametric statistic test is developed further for testing the conditional independence assumption conditional on policy propensity score. Under some regular conditions, we show that the proposed test statistics are asymptotically normal under the null hypotheses for time series data. In addition, the performances of the proposed methods are illustrated through Monte Carlo simulations and a real example considered in Angrist and Kuersteiner (2011).
时间序列数据随机推理的条件独立性检验
本文提出了一种检验时间序列随机推理中条件独立性假设的新方法。在辅助变量的帮助下,将条件独立假设转换为非参数条件矩检验,这些辅助变量允许影响策略选择,但依赖性可以通过潜在结果和可观察控制完全捕获。当策略选择为二元时,进一步发展了非参数统计检验,用于检验以策略倾向得分为条件的条件独立假设。在一些正则条件下,我们证明了所提出的检验统计量在零假设下是渐近正态的。此外,所提出的方法的性能通过Monte Carlo模拟和Angrist和Kuersteiner(2011)中考虑的一个真实例子来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistica Neerlandica
Statistica Neerlandica 数学-统计学与概率论
CiteScore
2.60
自引率
6.70%
发文量
26
审稿时长
>12 weeks
期刊介绍: Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信