{"title":"Testing Conditional Independence in Casual Inference for Time Series Data<sup>†</sup>","authors":"Zongwu Cai, Ying Fang, Ming Lin, Shengfang Tang","doi":"10.1111/stan.12323","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new procedure to test conditional independence assumption in studying casual inference for time series data. The conditional independence assumption is transformed to a nonparametric conditional moment test with the help of auxiliary variables which are allowed to affect policy choice but the dependence can be fully captured by potential outcomes and observable controls. When the policy choice is binary, a nonparametric statistic test is developed further for testing the conditional independence assumption conditional on policy propensity score. Under some regular conditions, we show that the proposed test statistics are asymptotically normal under the null hypotheses for time series data. In addition, the performances of the proposed methods are illustrated through Monte Carlo simulations and a real example considered in Angrist and Kuersteiner (2011).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/stan.12323","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose a new procedure to test conditional independence assumption in studying casual inference for time series data. The conditional independence assumption is transformed to a nonparametric conditional moment test with the help of auxiliary variables which are allowed to affect policy choice but the dependence can be fully captured by potential outcomes and observable controls. When the policy choice is binary, a nonparametric statistic test is developed further for testing the conditional independence assumption conditional on policy propensity score. Under some regular conditions, we show that the proposed test statistics are asymptotically normal under the null hypotheses for time series data. In addition, the performances of the proposed methods are illustrated through Monte Carlo simulations and a real example considered in Angrist and Kuersteiner (2011).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.