On a decomposition of $p$-adic Coxeter orbits

IF 0.9 Q2 MATHEMATICS
Alexander B. Ivanov
{"title":"On a decomposition of $p$-adic Coxeter orbits","authors":"Alexander B. Ivanov","doi":"10.46298/epiga.2023.8562","DOIUrl":null,"url":null,"abstract":"We analyze the geometry of some $p$-adic Deligne--Lusztig spaces $X_w(b)$ introduced in [Iva21] attached to an unramified reductive group ${\\bf G}$ over a non-archimedean local field. We prove that when ${\\bf G}$ is classical, $b$ basic and $w$ Coxeter, $X_w(b)$ decomposes as a disjoint union of translates of a certain integral $p$-adic Deligne--Lusztig space. Along the way we extend some observations of DeBacker and Reeder on rational conjugacy classes of unramified tori to the case of extended pure inner forms, and prove a loop version of Frobenius-twisted Steinberg's cross section.","PeriodicalId":41470,"journal":{"name":"Epijournal de Geometrie Algebrique","volume":"135 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epijournal de Geometrie Algebrique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2023.8562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We analyze the geometry of some $p$-adic Deligne--Lusztig spaces $X_w(b)$ introduced in [Iva21] attached to an unramified reductive group ${\bf G}$ over a non-archimedean local field. We prove that when ${\bf G}$ is classical, $b$ basic and $w$ Coxeter, $X_w(b)$ decomposes as a disjoint union of translates of a certain integral $p$-adic Deligne--Lusztig space. Along the way we extend some observations of DeBacker and Reeder on rational conjugacy classes of unramified tori to the case of extended pure inner forms, and prove a loop version of Frobenius-twisted Steinberg's cross section.
关于$p$进Coxeter轨道的分解
在非阿基米德局部域上,分析了[Iva21]中引入的$p$-adic Deligne—Lusztig空间$X_w(b)$在非阿基米德局部域上的几何性质。证明了当${\bf G}$为经典,$b$为基本,$w$为科塞特时,$X_w(b)$分解为某积分$p$-进阶Deligne—Lusztig空间的平移的不相交并。在此过程中,我们将DeBacker和Reeder关于非分枝环面的有理共轭类的一些观察推广到扩展的纯内形式的情况,并证明了Frobenius-twisted Steinberg横截面的一个循环版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
19
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信