New quantum codes from constacyclic codes over a general non-chain ring

IF 0.6 Q4 MATHEMATICS, APPLIED
Swati Bhardwaj, Mokshi Goyal, Madhu Raka
{"title":"New quantum codes from constacyclic codes over a general non-chain ring","authors":"Swati Bhardwaj, Mokshi Goyal, Madhu Raka","doi":"10.1142/s1793830923500726","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a prime power and let [Formula: see text] be a finite non-chain ring, where [Formula: see text], are polynomials, not all linear, which split into distinct linear factors over [Formula: see text]. We characterize constacyclic codes over the ring [Formula: see text] and study quantum codes from these. As an application, some new and better quantum codes, as compared to the best known codes, are obtained. We also prove that the choice of the polynomials [Formula: see text], [Formula: see text], is irrelevant while constructing quantum codes from constacyclic codes over [Formula: see text], it depends only on their degrees.","PeriodicalId":45568,"journal":{"name":"Discrete Mathematics Algorithms and Applications","volume":"26 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793830923500726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let [Formula: see text] be a prime power and let [Formula: see text] be a finite non-chain ring, where [Formula: see text], are polynomials, not all linear, which split into distinct linear factors over [Formula: see text]. We characterize constacyclic codes over the ring [Formula: see text] and study quantum codes from these. As an application, some new and better quantum codes, as compared to the best known codes, are obtained. We also prove that the choice of the polynomials [Formula: see text], [Formula: see text], is irrelevant while constructing quantum codes from constacyclic codes over [Formula: see text], it depends only on their degrees.
一般非链环上的恒环码的新量子码
设[公式:见文]是一个素数幂,设[公式:见文]是一个有限的非链环,其中[公式:见文]是多项式,不全是线性的,它们在[公式:见文]上分裂成不同的线性因子。我们描述了环上的恒环码[公式:见文本],并从中研究量子码。作为一种应用,与已知的量子码相比,获得了一些新的、更好的量子码。我们还证明了多项式的选择[公式:见文],[公式:见文],在从[公式:见文]上的恒环码构造量子码时是无关的,它只取决于它们的度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
41.70%
发文量
129
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信