Fixed points of generalized cyclic contractions without continuity and application to fractal generation

IF 2.6 3区 数学 Q1 MATHEMATICS, APPLIED
Subhadip Roy, Parbati Saha, Sumon Ghosh, Binayak S. Choudhury
{"title":"Fixed points of generalized cyclic contractions without continuity and application to fractal generation","authors":"Subhadip Roy, Parbati Saha, Sumon Ghosh, Binayak S. Choudhury","doi":"10.15388/namc.2024.29.33534","DOIUrl":null,"url":null,"abstract":"In this paper, we define a generalized cyclic contraction and prove a unique fixed point theorem for these contractions. An illustrative example is given, which shows that these contraction mappings may admit the discontinuities and also that an existing result in the literature is effectively generalized by the theorem. We apply the fixed point result for generation of fractal sets through construction of an iterated function system and the corresponding Hutchinsion–Barnsley operator. The above construction is illustrated by an example. The study here is in the context of metric spaces.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":"22 5","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Modelling and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15388/namc.2024.29.33534","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we define a generalized cyclic contraction and prove a unique fixed point theorem for these contractions. An illustrative example is given, which shows that these contraction mappings may admit the discontinuities and also that an existing result in the literature is effectively generalized by the theorem. We apply the fixed point result for generation of fractal sets through construction of an iterated function system and the corresponding Hutchinsion–Barnsley operator. The above construction is illustrated by an example. The study here is in the context of metric spaces.
无连续性广义循环收缩的不动点及其在分形生成中的应用
在本文中,我们定义了一个广义循环收缩,并证明了它的一个唯一不动点定理。给出了一个例子,证明了这些收缩映射可以承认不连续,并证明了该定理有效地推广了文献中已有的一个结果。通过构造迭代函数系统和相应的Hutchinsion-Barnsley算子,将不动点结果应用于分形集的生成。通过一个例子说明了上述结构。这里的研究是在度量空间的背景下进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nonlinear Analysis-Modelling and Control
Nonlinear Analysis-Modelling and Control MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.80
自引率
10.00%
发文量
63
审稿时长
9.6 months
期刊介绍: The scope of the journal is to provide a multidisciplinary forum for scientists, researchers and engineers involved in research and design of nonlinear processes and phenomena, including the nonlinear modelling of phenomena of the nature. The journal accepts contributions on nonlinear phenomena and processes in any field of science and technology. The aims of the journal are: to provide a presentation of theoretical results and applications; to cover research results of multidisciplinary interest; to provide fast publishing of quality papers by extensive work of editors and referees; to provide an early access to the information by presenting the complete papers on Internet.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信