Development of control-oriented models for a building under regular heating, ventilation and air-conditioning operation - a comparative simulation study and an experimental validation
{"title":"Development of control-oriented models for a building under regular heating, ventilation and air-conditioning operation - a comparative simulation study and an experimental validation","authors":"Heman Shamachurn, Sayed Z. Sayed Hassen","doi":"10.1504/ijmic.2023.128763","DOIUrl":null,"url":null,"abstract":"The development of models is a major barrier to the fast and widespread adoption of model predictive control for building HVAC systems. This paper proposes the subspace identification technique, refined through the prediction error method, to quickly obtain a model for the accurate indoor temperature prediction, even with little identification data, even in the presence of large unmeasured disturbances and noisy identification data, and even using data which was collected during the regular HVAC operation of a building. The identification issues associated with grey-box models were thoroughly investigated. In particular, the development of a grey-box model was found to be a complex, lengthy and computationally intensive process, even for a single-zone building, and the models were not physically meaningful. The proposed method was found to be much easier and faster, with a potential for direct practical application. Analysis on experimental data from an existing building provided promising results.","PeriodicalId":46456,"journal":{"name":"International Journal of Modelling Identification and Control","volume":"20 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modelling Identification and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmic.2023.128763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
The development of models is a major barrier to the fast and widespread adoption of model predictive control for building HVAC systems. This paper proposes the subspace identification technique, refined through the prediction error method, to quickly obtain a model for the accurate indoor temperature prediction, even with little identification data, even in the presence of large unmeasured disturbances and noisy identification data, and even using data which was collected during the regular HVAC operation of a building. The identification issues associated with grey-box models were thoroughly investigated. In particular, the development of a grey-box model was found to be a complex, lengthy and computationally intensive process, even for a single-zone building, and the models were not physically meaningful. The proposed method was found to be much easier and faster, with a potential for direct practical application. Analysis on experimental data from an existing building provided promising results.
期刊介绍:
Most of the research and experiments in the fields of science, engineering, and social studies have spent significant efforts to find rules from various complicated phenomena by observations, recorded data, logic derivations, and so on. The rules are normally summarised as concise and quantitative expressions or “models". “Identification" provides mechanisms to establish the models and “control" provides mechanisms to improve the system (represented by its model) performance. IJMIC is set up to reflect the relevant generic studies in this area.