{"title":"Forecasting Carbon Dioxide Emission in Thailand Using Machine Learning Techniques","authors":"Siriporn Chimphlee, Witcha Chimphlee","doi":"10.52549/ijeei.v11i3.4892","DOIUrl":null,"url":null,"abstract":"Machine Learning (ML) models and the massive quantity of data accessible provide useful tools for analyzing the advancement of climate change trends and identifying major contributors. Random Forest (RF), Gradient Boosting Regression (GBR), XGBoost (XGB), Support Vector Machines (SVC), Decision Trees (DT), K-Nearest Neighbors (KNN), Principal Component Analysis (PCA), ensemble methods, and Genetic Algorithms (GA) are used in this study to predict CO2 emissions in Thailand. A variety of evaluation criteria are used to determine how well these models work, including R-squared (R2), mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE), and correctness. The results show that the RF and XGB algorithms function exceptionally well, with high R-squared values and low error rates. KNN, PCA, ensemble methods, and GA, on the other hand, outperform the top-performing models. Their lower R-squared values and higher error scores indicate that they are unable to accurately anticipate CO2 emissions. This paper contributes to the field of environmental modeling by comparing the effectiveness of various machine learning approaches in forecasting CO2 emissions. The findings can assist Thailand in promoting sustainable development and developing policies that are consistent with worldwide efforts to combat climate change.","PeriodicalId":37618,"journal":{"name":"Indonesian Journal of Electrical Engineering and Informatics","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52549/ijeei.v11i3.4892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Machine Learning (ML) models and the massive quantity of data accessible provide useful tools for analyzing the advancement of climate change trends and identifying major contributors. Random Forest (RF), Gradient Boosting Regression (GBR), XGBoost (XGB), Support Vector Machines (SVC), Decision Trees (DT), K-Nearest Neighbors (KNN), Principal Component Analysis (PCA), ensemble methods, and Genetic Algorithms (GA) are used in this study to predict CO2 emissions in Thailand. A variety of evaluation criteria are used to determine how well these models work, including R-squared (R2), mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE), and correctness. The results show that the RF and XGB algorithms function exceptionally well, with high R-squared values and low error rates. KNN, PCA, ensemble methods, and GA, on the other hand, outperform the top-performing models. Their lower R-squared values and higher error scores indicate that they are unable to accurately anticipate CO2 emissions. This paper contributes to the field of environmental modeling by comparing the effectiveness of various machine learning approaches in forecasting CO2 emissions. The findings can assist Thailand in promoting sustainable development and developing policies that are consistent with worldwide efforts to combat climate change.
期刊介绍:
The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation. Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction. Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging. Control: Optimal, Robust and Adaptive Controls, Non Linear and Stochastic Controls, Modeling and Identification, Robotics, Image Based Control, Hybrid and Switching Control, Process Optimization and Scheduling, Control and Intelligent Systems. Computer and Informatics: Computer Architecture, Parallel and Distributed Computer, Pervasive Computing, Computer Network, Embedded System, Human—Computer Interaction, Virtual/Augmented Reality, Computer Security, Software Engineering (Software: Lifecycle, Management, Engineering Process, Engineering Tools and Methods), Programming (Programming Methodology and Paradigm), Data Engineering (Data and Knowledge level Modeling, Information Management (DB) practices, Knowledge Based Management System, Knowledge Discovery in Data).