SODCNN: A Convolutional Neural Network Model for Small Object Detection in Drone-Captured Images

IF 4.4 2区 地球科学 Q1 REMOTE SENSING
Drones Pub Date : 2023-10-01 DOI:10.3390/drones7100615
Lu Meng, Lijun Zhou, Yangqian Liu
{"title":"SODCNN: A Convolutional Neural Network Model for Small Object Detection in Drone-Captured Images","authors":"Lu Meng, Lijun Zhou, Yangqian Liu","doi":"10.3390/drones7100615","DOIUrl":null,"url":null,"abstract":"Drone images contain a large number of small, dense targets. And they are vital for agriculture, security, monitoring, and more. However, detecting small objects remains an unsolved challenge, as they occupy a small proportion of the image and have less distinct features. Conventional object detection algorithms fail to produce satisfactory results for small objects. To address this issue, an improved algorithm for small object detection is proposed by modifying the YOLOv7 network structure. Firstly, redundant detection head for large objects is removed, and the feature extraction for small object detection advances. Secondly, the number of anchor boxes is increased to improve the recall rate for small objects. And, considering the limitations of the CIoU loss function in optimization, the EIoU loss function is employed as the bounding box loss function, to achieve more stable and effective regression. Lastly, an attention-based feature fusion module is introduced to replace the Concat module in FPN. This module considers both global and local information, effectively addressing the challenges in multiscale and small object fusion. Experimental results on the VisDrone2019 dataset demonstrate that the proposed algorithm achieves an mAP50 of 54.03% and an mAP50:90 of 32.06%, outperforming the latest similar research papers and significantly enhancing the model’s capability for small object detection in dense scenes.","PeriodicalId":36448,"journal":{"name":"Drones","volume":"1 1","pages":"0"},"PeriodicalIF":4.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/drones7100615","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Drone images contain a large number of small, dense targets. And they are vital for agriculture, security, monitoring, and more. However, detecting small objects remains an unsolved challenge, as they occupy a small proportion of the image and have less distinct features. Conventional object detection algorithms fail to produce satisfactory results for small objects. To address this issue, an improved algorithm for small object detection is proposed by modifying the YOLOv7 network structure. Firstly, redundant detection head for large objects is removed, and the feature extraction for small object detection advances. Secondly, the number of anchor boxes is increased to improve the recall rate for small objects. And, considering the limitations of the CIoU loss function in optimization, the EIoU loss function is employed as the bounding box loss function, to achieve more stable and effective regression. Lastly, an attention-based feature fusion module is introduced to replace the Concat module in FPN. This module considers both global and local information, effectively addressing the challenges in multiscale and small object fusion. Experimental results on the VisDrone2019 dataset demonstrate that the proposed algorithm achieves an mAP50 of 54.03% and an mAP50:90 of 32.06%, outperforming the latest similar research papers and significantly enhancing the model’s capability for small object detection in dense scenes.
基于卷积神经网络的无人机捕获图像小目标检测模型
无人机图像包含大量小而密集的目标。它们对农业、安全、监控等领域至关重要。然而,检测小物体仍然是一个未解决的挑战,因为它们占图像的比例很小,特征不太明显。传统的目标检测算法对小目标的检测效果不理想。为了解决这一问题,通过修改YOLOv7网络结构,提出了一种改进的小目标检测算法。首先,去除大目标的冗余检测头,推进小目标检测的特征提取。其次,增加锚盒的数量,提高小目标的召回率;并且,考虑到CIoU损失函数在优化中的局限性,采用EIoU损失函数作为边界盒损失函数,实现更稳定有效的回归。最后,介绍了一种基于注意力的特征融合模块来取代FPN中的Concat模块。该模块考虑了全局和局部信息,有效地解决了多尺度和小目标融合的挑战。在VisDrone2019数据集上的实验结果表明,该算法的mAP50为54.03%,mAP50:90为32.06%,优于最新的同类研究论文,显著增强了模型在密集场景下的小目标检测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drones
Drones Engineering-Aerospace Engineering
CiteScore
5.60
自引率
18.80%
发文量
331
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信