Structural and magnetic effect of bismuth substitution on Li-Co ferrite synthesized through microemulsion method

IF 0.9 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
A. Saleem, M. S. Shifa, S. A. Buzdar, H. M. N. ul H. K. Asghar, M. Mustaqeem, Z. A. Gilani, S. M. Ali, M. A. Shar, A K. Khan
{"title":"Structural and magnetic effect of bismuth substitution on Li-Co ferrite synthesized through microemulsion method","authors":"A. Saleem, M. S. Shifa, S. A. Buzdar, H. M. N. ul H. K. Asghar, M. Mustaqeem, Z. A. Gilani, S. M. Ali, M. A. Shar, A K. Khan","doi":"10.15251/jor.2023.195.547","DOIUrl":null,"url":null,"abstract":"Li-Co spinal ferrites were synthesized in pure and doped form by substituting/doping a post transition metal, bismuth in varying concentrations using micro-emulsion technique. Effect of bismuth substitution was studied by investigating the structural and magnetic properties in detail. X-ray diffractometer results confirmed the creation of single phase along with a slight occurrence of orthophase in prepared ferrites. Average crystallite size increased from 14 to 28 nm by increase in bismuth concentration. SEM micrographs were in complete agreement with XRD results showing spherical to cubic grains which was a confirmation of cubic spinal structure. Average estimated grain size of 52 nm showing agglomeration was also a good testimony of XRD results. VSM technique was employed to study magnetic properties of prepared samples within applied magnetic field strength of -10,000Oe to 10,000Oe. Ms and Hc values were observed to be decreasing with increasing bismuth content. Lower Ms and Hc values made our newly synthesized material fit for transformer cores and induction purposes.","PeriodicalId":49156,"journal":{"name":"Journal of Ovonic Research","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovonic Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15251/jor.2023.195.547","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Li-Co spinal ferrites were synthesized in pure and doped form by substituting/doping a post transition metal, bismuth in varying concentrations using micro-emulsion technique. Effect of bismuth substitution was studied by investigating the structural and magnetic properties in detail. X-ray diffractometer results confirmed the creation of single phase along with a slight occurrence of orthophase in prepared ferrites. Average crystallite size increased from 14 to 28 nm by increase in bismuth concentration. SEM micrographs were in complete agreement with XRD results showing spherical to cubic grains which was a confirmation of cubic spinal structure. Average estimated grain size of 52 nm showing agglomeration was also a good testimony of XRD results. VSM technique was employed to study magnetic properties of prepared samples within applied magnetic field strength of -10,000Oe to 10,000Oe. Ms and Hc values were observed to be decreasing with increasing bismuth content. Lower Ms and Hc values made our newly synthesized material fit for transformer cores and induction purposes.
微乳液法合成Li-Co铁氧体的铋取代的结构和磁效应
采用微乳液技术,以不同浓度取代/掺杂过渡后金属铋,合成了纯掺杂形式的锂钴脊铁氧体。通过对其结构和磁性能的详细考察,研究了铋取代的影响。x射线衍射结果证实在制备的铁氧体中产生了单相和少量的正相。随着铋浓度的增加,晶体的平均尺寸从14 nm增加到28 nm。SEM显微图与XRD结果完全一致,显示球形到立方颗粒,证实了立方结构。平均估计晶粒尺寸为52 nm,存在团聚现象,这也很好地证明了XRD结果。采用VSM技术研究制备的样品在外加磁场强度为-10,000 ~ 10,000Oe范围内的磁性能。Ms和Hc值随铋含量的增加而降低。较低的Ms和Hc值使我们的新合成材料适合变压器铁芯和感应用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Ovonic Research
Journal of Ovonic Research MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
1.90
自引率
20.00%
发文量
77
期刊介绍: Journal of Ovonic Research (JOR) appears with six issues per year and is open to the reviews, papers, short communications and breakings news inserted as Short Notes, in the field of ovonic (mainly chalcogenide) materials for memories, smart materials based on ovonic materials (combinations of various elements including chalcogenides), materials with nano-structures based on various alloys, as well as semiconducting materials and alloys based on amorphous silicon, germanium, carbon in their various nanostructured forms, either simple or doped/alloyed with hydrogen, fluorine, chlorine and other elements of high interest for applications in electronics and optoelectronics. Papers on minerals with possible applications in electronics and optoelectronics are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信