A. Saleem, M. S. Shifa, S. A. Buzdar, H. M. N. ul H. K. Asghar, M. Mustaqeem, Z. A. Gilani, S. M. Ali, M. A. Shar, A K. Khan
{"title":"Structural and magnetic effect of bismuth substitution on Li-Co ferrite synthesized through microemulsion method","authors":"A. Saleem, M. S. Shifa, S. A. Buzdar, H. M. N. ul H. K. Asghar, M. Mustaqeem, Z. A. Gilani, S. M. Ali, M. A. Shar, A K. Khan","doi":"10.15251/jor.2023.195.547","DOIUrl":null,"url":null,"abstract":"Li-Co spinal ferrites were synthesized in pure and doped form by substituting/doping a post transition metal, bismuth in varying concentrations using micro-emulsion technique. Effect of bismuth substitution was studied by investigating the structural and magnetic properties in detail. X-ray diffractometer results confirmed the creation of single phase along with a slight occurrence of orthophase in prepared ferrites. Average crystallite size increased from 14 to 28 nm by increase in bismuth concentration. SEM micrographs were in complete agreement with XRD results showing spherical to cubic grains which was a confirmation of cubic spinal structure. Average estimated grain size of 52 nm showing agglomeration was also a good testimony of XRD results. VSM technique was employed to study magnetic properties of prepared samples within applied magnetic field strength of -10,000Oe to 10,000Oe. Ms and Hc values were observed to be decreasing with increasing bismuth content. Lower Ms and Hc values made our newly synthesized material fit for transformer cores and induction purposes.","PeriodicalId":49156,"journal":{"name":"Journal of Ovonic Research","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovonic Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15251/jor.2023.195.547","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Li-Co spinal ferrites were synthesized in pure and doped form by substituting/doping a post transition metal, bismuth in varying concentrations using micro-emulsion technique. Effect of bismuth substitution was studied by investigating the structural and magnetic properties in detail. X-ray diffractometer results confirmed the creation of single phase along with a slight occurrence of orthophase in prepared ferrites. Average crystallite size increased from 14 to 28 nm by increase in bismuth concentration. SEM micrographs were in complete agreement with XRD results showing spherical to cubic grains which was a confirmation of cubic spinal structure. Average estimated grain size of 52 nm showing agglomeration was also a good testimony of XRD results. VSM technique was employed to study magnetic properties of prepared samples within applied magnetic field strength of -10,000Oe to 10,000Oe. Ms and Hc values were observed to be decreasing with increasing bismuth content. Lower Ms and Hc values made our newly synthesized material fit for transformer cores and induction purposes.
期刊介绍:
Journal of Ovonic Research (JOR) appears with six issues per year and is open to the reviews, papers, short communications and breakings news inserted as Short Notes, in the field of ovonic (mainly chalcogenide) materials for memories, smart materials based on ovonic materials (combinations of various elements including chalcogenides), materials with nano-structures based on various alloys, as well as semiconducting materials and alloys based on amorphous silicon, germanium, carbon in their various nanostructured forms, either simple or doped/alloyed with hydrogen, fluorine, chlorine and other elements of high interest for applications in electronics and optoelectronics. Papers on minerals with possible applications in electronics and optoelectronics are encouraged.