Penalized quasi-likelihood estimation and model selection with parameters on the boundary of the parameter space

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Heino Bohn Nielsen, Anders Rahbek
{"title":"Penalized quasi-likelihood estimation and model selection with parameters on the boundary of the parameter space","authors":"Heino Bohn Nielsen, Anders Rahbek","doi":"10.1093/ectj/utad022","DOIUrl":null,"url":null,"abstract":"Abstract We consider here penalized likelihood-based estimation and model selection applied to econometric time series models, which allow for non-negativity (boundary) constraints on some or all of the parameters. We establish that joint model selection and estimation result in standard asymptotic Gaussian distributed estimators. The results contrasts with non-penalized estimation, which as well-known leads to non-standard asymptotic distributions that depend on the unknown number of parameters on the boundary of the parameter space. We apply our results to the rich class of autoregressive conditional heteroskedastic (ARCH) models for time-varying volatility. For the ARCH models, simulations show that penalized estimation and model-selection works surprisingly well, even for models with a large number of parameters. An empirical illustration for stock-market return data shows the ability of penalized estimation to select ARCH models that fit nicely the empirical autocorrelation function, and confirms the stylized fact of long-memory in such financial time-series data.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ectj/utad022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We consider here penalized likelihood-based estimation and model selection applied to econometric time series models, which allow for non-negativity (boundary) constraints on some or all of the parameters. We establish that joint model selection and estimation result in standard asymptotic Gaussian distributed estimators. The results contrasts with non-penalized estimation, which as well-known leads to non-standard asymptotic distributions that depend on the unknown number of parameters on the boundary of the parameter space. We apply our results to the rich class of autoregressive conditional heteroskedastic (ARCH) models for time-varying volatility. For the ARCH models, simulations show that penalized estimation and model-selection works surprisingly well, even for models with a large number of parameters. An empirical illustration for stock-market return data shows the ability of penalized estimation to select ARCH models that fit nicely the empirical autocorrelation function, and confirms the stylized fact of long-memory in such financial time-series data.
参数空间边界上参数的惩罚拟似然估计和模型选择
我们在这里考虑应用于计量经济时间序列模型的基于惩罚似然的估计和模型选择,它允许部分或全部参数的非负性(边界)约束。我们建立了标准渐近高斯分布估计的联合模型选择和估计结果。结果与非惩罚估计形成对比,众所周知,非惩罚估计导致非标准渐近分布,依赖于参数空间边界上未知数量的参数。我们将我们的结果应用于时变波动率的富类自回归条件异方差(ARCH)模型。对于ARCH模型,仿真表明惩罚估计和模型选择的效果出奇地好,即使对于具有大量参数的模型也是如此。对股票市场收益数据的实证说明,惩罚估计能够选择出适合经验自相关函数的ARCH模型,并证实了这类金融时间序列数据具有长记忆的风格化事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信