Stephen D Gregory, Jonathan P Gillson, Katie Whitlock, Jon Barry, Peter Gough, Robert J Hillman, David Mee, Graeme Peirson, Brian A Shields, Lawrence Talks, Simon Toms, Alan M Walker, Ben Wilson, Ian C Davidson
{"title":"Estimation of returning Atlantic salmon stock from rod exploitation rate for principal salmon rivers in England & Wales","authors":"Stephen D Gregory, Jonathan P Gillson, Katie Whitlock, Jon Barry, Peter Gough, Robert J Hillman, David Mee, Graeme Peirson, Brian A Shields, Lawrence Talks, Simon Toms, Alan M Walker, Ben Wilson, Ian C Davidson","doi":"10.1093/icesjms/fsad161","DOIUrl":null,"url":null,"abstract":"Abstract For effective fishery management, estimated stock sizes, along with their uncertainties, should be accurate, precise, and unbiased. Atlantic salmon Salmo salar stock assessment in England and Wales (and elsewhere across the Atlantic) estimate returning salmon stocks by applying a measure of rod exploitation rate (RER), derived from less abundant fishery-independent stock estimates, to abundant fishery-dependent data. Currently, RER estimates are generated for individual principal salmon rivers based on available local data and assumptions. We propose a single, consistent, transparent, and statistically robust method to estimate salmon stocks that transfers strength of information from “data-rich” rivers, i.e. those with fisheries-independent data, to “data-poor” rivers without such data. We proposed, fitted, simplified, and then validated a Beta–Binomial model of RER, including covariates representing angler and fish behaviours, river flow, and random effects to control for nuisance effects. Our “best” model revealed covariate effects in line with our hypotheses and generalized to data not used to train it. We used this model to extrapolate stock estimates from 12 data-rich to 52 data-poor rivers, together with their uncertainties. The resulting river-specific salmon stock estimates were judged to be useful and can be used as key inputs to river-specific, national, and international salmon stock assessments.","PeriodicalId":51072,"journal":{"name":"ICES Journal of Marine Science","volume":"68 5-6","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICES Journal of Marine Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/icesjms/fsad161","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract For effective fishery management, estimated stock sizes, along with their uncertainties, should be accurate, precise, and unbiased. Atlantic salmon Salmo salar stock assessment in England and Wales (and elsewhere across the Atlantic) estimate returning salmon stocks by applying a measure of rod exploitation rate (RER), derived from less abundant fishery-independent stock estimates, to abundant fishery-dependent data. Currently, RER estimates are generated for individual principal salmon rivers based on available local data and assumptions. We propose a single, consistent, transparent, and statistically robust method to estimate salmon stocks that transfers strength of information from “data-rich” rivers, i.e. those with fisheries-independent data, to “data-poor” rivers without such data. We proposed, fitted, simplified, and then validated a Beta–Binomial model of RER, including covariates representing angler and fish behaviours, river flow, and random effects to control for nuisance effects. Our “best” model revealed covariate effects in line with our hypotheses and generalized to data not used to train it. We used this model to extrapolate stock estimates from 12 data-rich to 52 data-poor rivers, together with their uncertainties. The resulting river-specific salmon stock estimates were judged to be useful and can be used as key inputs to river-specific, national, and international salmon stock assessments.
期刊介绍:
The ICES Journal of Marine Science publishes original articles, opinion essays (“Food for Thought”), visions for the future (“Quo Vadimus”), and critical reviews that contribute to our scientific understanding of marine systems and the impact of human activities on them. The Journal also serves as a foundation for scientific advice across the broad spectrum of management and conservation issues related to the marine environment. Oceanography (e.g. productivity-determining processes), marine habitats, living resources, and related topics constitute the key elements of papers considered for publication. This includes economic, social, and public administration studies to the extent that they are directly related to management of the seas and are of general interest to marine scientists. Integrated studies that bridge gaps between traditional disciplines are particularly welcome.