{"title":"Estimating Plio‐Pleistocene North African Monsoon Runoff Into the Mediterranean Sea and Temperature Impacts","authors":"D. Heslop, U. Amarathunga, E. J. Rohling","doi":"10.1029/2023pa004677","DOIUrl":null,"url":null,"abstract":"Abstract Sapropels are dark, organic‐rich layers found in Mediterranean sediments that formed during periods of bottom water anoxia. While various mechanisms have been proposed to have caused anoxic conditions, a primary factor is considered to be water column stratification induced by freshwater runoff related to intensified North African monsoon precipitation during precession minima. Monsoon intensification also induced Green Sahara Periods that may have impacted North African hominin dispersal. In this study, we present a novel regression‐based deconvolution of a high‐resolution planktonic foraminiferal oxygen isotope record to estimate the combination of freshwater runoff reaching the eastern Mediterranean and associated surface warming of the water column over the past 5 million years. Sapropels are known to occur in clusters associated with periods of high orbital eccentricity. Our analysis reveals a consistent influence of orbital eccentricity in modulating the North African monsoon, and a possible shift in runoff source area induced by the initiation of Northern Hemisphere ice sheets. Our findings provide important insights into the role of the North African monsoon in shaping Mediterranean environmental changes over the past 5 million years.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":"13 1","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1029/2023pa004677","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Sapropels are dark, organic‐rich layers found in Mediterranean sediments that formed during periods of bottom water anoxia. While various mechanisms have been proposed to have caused anoxic conditions, a primary factor is considered to be water column stratification induced by freshwater runoff related to intensified North African monsoon precipitation during precession minima. Monsoon intensification also induced Green Sahara Periods that may have impacted North African hominin dispersal. In this study, we present a novel regression‐based deconvolution of a high‐resolution planktonic foraminiferal oxygen isotope record to estimate the combination of freshwater runoff reaching the eastern Mediterranean and associated surface warming of the water column over the past 5 million years. Sapropels are known to occur in clusters associated with periods of high orbital eccentricity. Our analysis reveals a consistent influence of orbital eccentricity in modulating the North African monsoon, and a possible shift in runoff source area induced by the initiation of Northern Hemisphere ice sheets. Our findings provide important insights into the role of the North African monsoon in shaping Mediterranean environmental changes over the past 5 million years.
期刊介绍:
Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.