Non-stationary α-fractal functions and their dimensions in various function spaces

Pub Date : 2024-01-01 DOI:10.1016/j.indag.2023.10.006
Anarul Islam Mondal, Sangita Jha
{"title":"Non-stationary α-fractal functions and their dimensions in various function spaces","authors":"Anarul Islam Mondal,&nbsp;Sangita Jha","doi":"10.1016/j.indag.2023.10.006","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this article, we study the novel concept of non-stationary iterated function systems (IFSs) introduced by Massopust in 2019. At first, using a sequence of different contractive operators, we construct non-stationary </span><span><math><mi>α</mi></math></span>-fractal functions on the space of all continuous functions. Next, we provide some elementary properties of the fractal operator associated with the non-stationary <span><math><mi>α</mi></math></span>-fractal functions. Further, we show that the proposed interpolant generalizes the existing stationary interpolant in the sense of IFS. For a class of functions defined on an interval, we derive conditions on the IFS parameters so that the corresponding non-stationary <span><math><mi>α</mi></math></span><span>-fractal functions are elements of some standard spaces like bounded variation space, convex Lipschitz space, and other function spaces. Finally, we discuss the dimensional analysis of the corresponding non-stationary </span><span><math><mi>α</mi></math></span>-fractal functions on these spaces.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study the novel concept of non-stationary iterated function systems (IFSs) introduced by Massopust in 2019. At first, using a sequence of different contractive operators, we construct non-stationary α-fractal functions on the space of all continuous functions. Next, we provide some elementary properties of the fractal operator associated with the non-stationary α-fractal functions. Further, we show that the proposed interpolant generalizes the existing stationary interpolant in the sense of IFS. For a class of functions defined on an interval, we derive conditions on the IFS parameters so that the corresponding non-stationary α-fractal functions are elements of some standard spaces like bounded variation space, convex Lipschitz space, and other function spaces. Finally, we discuss the dimensional analysis of the corresponding non-stationary α-fractal functions on these spaces.

分享
查看原文
非稳态 α 分形函数及其在各种函数空间中的维数
在这篇文章中,我们研究了马索普斯特(Massopust)于 2019 年提出的非稳态迭代函数系统(IFS)这一新概念。首先,我们利用一系列不同的收缩算子,在所有连续函数的空间上构造了非稳态α分形函数。接下来,我们提供了与非稳态α-分形函数相关的分形算子的一些基本性质。此外,我们还证明了所提出的插值法在 IFS 的意义上概括了现有的静态插值法。对于一类定义在区间上的函数,我们推导出了 IFS 参数的条件,从而使相应的非稳态 α 分形函数成为一些标准空间的元素,例如有界变化空间、凸立普茨空间和其他函数空间。最后,我们讨论了这些空间上相应的非稳态α-分形函数的维度分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信