{"title":"LSTM Data-Driven Model of Multi-scene Virtual Synchronous Generator","authors":"Jiangbin Tian, Guohui Zeng, Zhenhua Zhang, Yuzong Wang, Jinbin Zhao, Xiangchen Zhu","doi":"10.23919/epe23ecceeurope58414.2023.10264612","DOIUrl":null,"url":null,"abstract":"This paper proposes a data-driven modeling approach using LSTM to accurately describe the dynamic characteristics of Virtual Synchronous Generator (VSG) systems. VSG technology allows grid-connected inverters to resemble synchronous generators externally. However, the commonly used small-signal model faces challenges in capturing the complexity of VSG systems, particularly in complex scenarios. The proposed LSTM-based data-driven model considers the impact of irrational factors, providing accurate and stable VSG system modeling. Experimental results demonstrate the superiority of the LSTM neural network-based data-driven VSG model over the small-signal model and typical data-driven models in terms of accuracy and stability.","PeriodicalId":0,"journal":{"name":"","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/epe23ecceeurope58414.2023.10264612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a data-driven modeling approach using LSTM to accurately describe the dynamic characteristics of Virtual Synchronous Generator (VSG) systems. VSG technology allows grid-connected inverters to resemble synchronous generators externally. However, the commonly used small-signal model faces challenges in capturing the complexity of VSG systems, particularly in complex scenarios. The proposed LSTM-based data-driven model considers the impact of irrational factors, providing accurate and stable VSG system modeling. Experimental results demonstrate the superiority of the LSTM neural network-based data-driven VSG model over the small-signal model and typical data-driven models in terms of accuracy and stability.